Llama-2-Open-Source-LLM-CPU-Inference 使用教程
2026-01-16 09:43:06作者:明树来
项目介绍
Llama-2-Open-Source-LLM-CPU-Inference 是一个开源项目,旨在帮助用户在本地CPU上运行Llama 2和其他开源大型语言模型(LLMs)进行文档问答。该项目通过使用量化技术,使得在CPU上运行LLMs成为可能,从而减少了对第三方商业LLM提供商的依赖,特别是在数据隐私和合规性方面有特殊需求的企业环境中。
项目快速启动
环境准备
-
克隆项目仓库
git clone https://github.com/kennethleungty/Llama-2-Open-Source-LLM-CPU-Inference.git cd Llama-2-Open-Source-LLM-CPU-Inference -
安装依赖
pip install -r requirements.txt -
配置模型 下载所需的LLama 2模型文件并放置在
models目录下。
运行示例
from transformers import LlamaForQuestionAnswering, LlamaTokenizer
# 加载模型和分词器
model_path = "models/llama-2-7b-chat.ggmlv3.q8_0.bin"
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForQuestionAnswering.from_pretrained(model_path)
# 示例输入
question = "什么是开源大型语言模型?"
context = "开源大型语言模型(LLMs)是一种可以通过公开源代码访问和修改的人工智能模型,广泛应用于自然语言处理任务中。"
# 编码输入
inputs = tokenizer(question, context, return_tensors='pt')
# 获取答案
outputs = model(**inputs)
answer_start = torch.argmax(outputs.start_logits)
answer_end = torch.argmax(outputs.end_logits) + 1
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs.input_ids[0][answer_start:answer_end]))
print(f"答案: {answer}")
应用案例和最佳实践
应用案例
- 企业内部文档问答系统:利用Llama 2模型构建一个内部文档问答系统,帮助员工快速获取所需信息,提高工作效率。
- 教育领域的智能助教:在教育领域,可以使用该模型构建智能助教系统,帮助学生解答学术问题,提供学习辅导。
最佳实践
- 模型量化:使用量化技术减少模型大小和计算需求,使得在CPU上运行更加高效。
- 数据隐私保护:在处理敏感数据时,确保模型和数据存储在本地,避免数据泄露风险。
典型生态项目
- LangChain:一个用于构建语言模型应用的框架,可以与Llama 2模型结合使用,提供更丰富的功能和更好的集成体验。
- GGML:一个用于机器学习的库,支持高效的模型量化和推理,是运行Llama 2模型的关键组件之一。
通过以上步骤和示例,您可以快速上手并应用Llama-2-Open-Source-LLM-CPU-Inference项目,构建自己的文档问答系统。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0114
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
272
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7