单阶段语义分割从图像标签(CVPR 2020)
2024-09-24 04:37:56作者:晏闻田Solitary
本教程旨在指导您如何搭建并运行【单阶段语义分割从图像标签】这一项目,该技术由Nikita Araslanov和Stefan Roth在CVPR 2020上提出。此项目通过仅使用图像级标注以自监督方式训练单一网络模型实现具有竞争力的语义分割性能。
1. 项目介绍
单阶段语义分割项目(1-stage-wseg)提供了原论文的代码实现,它展示了如何不依赖像素级别的标注,仅通过图像整体标签来训练语义分割模型。这一方法在Pascal VOC数据集上进行了验证,并取得了令人印象深刻的结果。项目基于PyTorch框架,并利用了弱监督学习策略。
2. 快速启动
环境准备
首先,确保您的环境满足以下要求:
- Python 3.6
- PyTorch 1.0 及其相应的CUDA版本(推荐CUDA 9.0)
- 至少两块Titan X GPU(每块GPU内存至少12GB)
步骤一:克隆项目及安装依赖
git clone https://github.com/visinf/1-stage-wseg.git
conda create -n sss_env --file 1-stage-wseg=requirements.txt
conda activate sss_env
步骤二:数据准备
下载PASCAL VOC 2012(含增补数据)和SBD数据集,并创建符号链接到项目的数据目录中:
wget [VOC训练/验证数据链接]
wget [SBD训练数据链接]
ln -s <path_to_VOC> 1-stage-wseg/data/voc
ln -s <path_to_SBD> 1-stage-wseg/data/sbd
步骤三:预训练模型
下载所需的预训练权重文件,并放置于1-stage-wseg/models/weights/目录下。
训练示例
接下来,您可以开始训练一个基本模型,例如使用ResNet50作为基础架构:
EXP=baselines RUN_ID=v01
./launch/run_voc_resnet50.sh
这将创建相应的日志和快照目录。
3. 应用案例和最佳实践
对于模型推理和评估,您需要指定实验名称(EXP)、运行ID以及可能的输出路径等参数。例如,进行模型推断:
EXP=baselines RUN_ID=v01 OUTPUT_DIR=/path/to/save/masks
./launch/infer_val.sh
然后,计算IoU以评估结果:
SAVE_DIR=/path/to/results ./launch/eval_seg.sh
4. 典型生态项目
尽管该项目本身聚焦于特定的语义分割技术,其开放源代码贡献促进了弱监督学习在计算机视觉领域的研究和应用。社区中的开发者可以借鉴这种自监督学习的方法,应用于其他需要减少标注成本的场景,比如视频分割、实时物体识别等领域。此外,通过调整网络架构或探索不同的自监督策略,研究者可以进一步推进弱监督学习领域的发展。
以上步骤为您提供了开始使用此开源项目的简明指南。深入探索项目源码和文档,可以帮助您更全面地理解其实现细节和潜在的应用范围。记得查阅项目的GitHub页面获取最新信息和更新。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881