单阶段语义分割从图像标签(CVPR 2020)
2024-09-24 19:50:47作者:晏闻田Solitary
本教程旨在指导您如何搭建并运行【单阶段语义分割从图像标签】这一项目,该技术由Nikita Araslanov和Stefan Roth在CVPR 2020上提出。此项目通过仅使用图像级标注以自监督方式训练单一网络模型实现具有竞争力的语义分割性能。
1. 项目介绍
单阶段语义分割项目(1-stage-wseg
)提供了原论文的代码实现,它展示了如何不依赖像素级别的标注,仅通过图像整体标签来训练语义分割模型。这一方法在Pascal VOC数据集上进行了验证,并取得了令人印象深刻的结果。项目基于PyTorch框架,并利用了弱监督学习策略。
2. 快速启动
环境准备
首先,确保您的环境满足以下要求:
- Python 3.6
- PyTorch 1.0 及其相应的CUDA版本(推荐CUDA 9.0)
- 至少两块Titan X GPU(每块GPU内存至少12GB)
步骤一:克隆项目及安装依赖
git clone https://github.com/visinf/1-stage-wseg.git
conda create -n sss_env --file 1-stage-wseg=requirements.txt
conda activate sss_env
步骤二:数据准备
下载PASCAL VOC 2012(含增补数据)和SBD数据集,并创建符号链接到项目的数据目录中:
wget [VOC训练/验证数据链接]
wget [SBD训练数据链接]
ln -s <path_to_VOC> 1-stage-wseg/data/voc
ln -s <path_to_SBD> 1-stage-wseg/data/sbd
步骤三:预训练模型
下载所需的预训练权重文件,并放置于1-stage-wseg/models/weights/
目录下。
训练示例
接下来,您可以开始训练一个基本模型,例如使用ResNet50作为基础架构:
EXP=baselines RUN_ID=v01
./launch/run_voc_resnet50.sh
这将创建相应的日志和快照目录。
3. 应用案例和最佳实践
对于模型推理和评估,您需要指定实验名称(EXP
)、运行ID以及可能的输出路径等参数。例如,进行模型推断:
EXP=baselines RUN_ID=v01 OUTPUT_DIR=/path/to/save/masks
./launch/infer_val.sh
然后,计算IoU以评估结果:
SAVE_DIR=/path/to/results ./launch/eval_seg.sh
4. 典型生态项目
尽管该项目本身聚焦于特定的语义分割技术,其开放源代码贡献促进了弱监督学习在计算机视觉领域的研究和应用。社区中的开发者可以借鉴这种自监督学习的方法,应用于其他需要减少标注成本的场景,比如视频分割、实时物体识别等领域。此外,通过调整网络架构或探索不同的自监督策略,研究者可以进一步推进弱监督学习领域的发展。
以上步骤为您提供了开始使用此开源项目的简明指南。深入探索项目源码和文档,可以帮助您更全面地理解其实现细节和潜在的应用范围。记得查阅项目的GitHub页面获取最新信息和更新。
热门项目推荐
相关项目推荐
- 鸿蒙开发工具大赶集本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。07
- LangChatLangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用Java03
- 每日精选项目🔥🔥 01.24日推荐项目:微软21节课程,入门生成式AI🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~027
- source-vue🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...Java02
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie047
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区018
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0109
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
373
72
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
276
72
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
200
47
xzs-mysql
学之思开源考试系统是一款 java + vue 的前后端分离的考试系统。主要优点是开发、部署简单快捷、界面设计友好、代码结构清晰。支持web端和微信小程序,能覆盖到pc机和手机等设备。 支持多种部署方式:集成部署、前后端分离部署、docker部署
HTML
5
1
LangChat
LangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用
Java
10
3
gin-vue-admin
🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。
Go
16
3
source-vue
🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...
Java
24
2
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
898
0
madong
基于Webman的权限管理系统
PHP
4
0
cool-admin-java
🔥 cool-admin(java版)一个很酷的后台权限管理框架,Ai编码、流程编排、模块化、插件化、CRUD极速开发,永久开源免费,基于springboot3、typescript、vue3、vite、element-ui等构建
Java
18
2