首页
/ 半监督语义分割与交叉一致性训练(CCT)实战指南

半监督语义分割与交叉一致性训练(CCT)实战指南

2024-09-22 04:31:58作者:钟日瑜

项目介绍

CCT(Cross-Consistency Training)是一个基于CVPR 2020论文实现的半监督语义分割框架。它通过引入一系列新颖的扰动策略,并强制在编码器输出层而不是输入数据上执行一致性约束,从而优化了传统半监督学习中对密集任务适用性的“聚类假设”。此外,此框架灵活地支持多域数据以及从弱标签到像素级标注的学习场景。

项目快速启动

环境搭建

确保您的开发环境满足以下条件:

  • 操作系统: Ubuntu 18.04 LTS 或更高版本。
  • Python: 版本3.7或以上。
  • PyTorch: 至少1.1.0版本,推荐使用最新稳定版。
  • CUDA: 至少10.0版本。

安装必要的依赖项可以通过运行以下命令完成:

pip install -r requirements.txt

获取数据集

以Pascal VOC为例,首先下载原始数据并解压,然后补充Semantic Contours from Inverse Detectors提供的额外注释,整合后设置好数据路径。

训练模型

配置文件configs/config.json需设定相应参数,包括数据目录、GPU数量等。启动训练:

python train.py --config configs/config.json

监控训练过程可以利用TensorBoard:

tensorboard --logdir saved

预测与评估

准备预训练模型和待分割图像,进行预测并将结果保存为PNG格式:

python inference.py --config config.json --model best_model.pth --images images_folder

应用案例与最佳实践

利用弱标签

若要结合图像级别的标签辅助训练,首先使用pseudo_labels目录下的脚本生成伪标签,之后修改配置文件中的use_weak_labelsTrue,重新开始训练流程。

性能调优

  • 根据硬件资源调整n_gpu
  • 调节权重参数如unsupervised_wweakly_loss_w来平衡有监督与无监督损失。
  • 实验不同的超参数组合找到模型的最佳性能。

典型生态项目

尽管这个特定的项目主要关注于其自身的方法论实现,它的贡献在于为语义分割研究提供了一个新的方向,特别是在减少对大量标注数据依赖方面的创新。社区成员可通过 fork 此仓库进行扩展研究,比如融合其他领域的技术如自监督学习或利用CCT框架在新的数据集上的适应性实验,进而形成一个围绕半监督学习和语义分割方法的更广泛生态。


本指南提供了基本的入门步骤,深入了解CCT及其应用需要详细阅读项目文档及论文,实践过程中不断调整和验证是进步的关键。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
608
115
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
77
Ffit-framework
面向全场景的 Java 企业级插件化编程框架,支持聚散部署和共享内存,以一切皆可替换为核心理念,旨在为用户提供一种灵活的服务开发范式。
Java
113
13
yolo-onnx-javayolo-onnx-java
Java开发视觉智能识别项目 纯java 调用 yolo onnx 模型 AI 视频 识别 支持 yolov5 yolov8 yolov7 yolov9 yolov10,yolov11,paddle ,obb,seg ,detection,包含 预处理 和 后处理 。java 目标检测 目标识别,可集成 rtsp rtmp,车牌识别,人脸识别,跌倒识别,打架识别,车牌识别,人脸识别 等
Java
9
0
cjoycjoy
a fast,lightweight and joy web framework
Cangjie
10
2
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25