首页
/ 半监督语义分割与交叉一致性训练(CCT)实战指南

半监督语义分割与交叉一致性训练(CCT)实战指南

2024-09-22 04:31:58作者:钟日瑜

项目介绍

CCT(Cross-Consistency Training)是一个基于CVPR 2020论文实现的半监督语义分割框架。它通过引入一系列新颖的扰动策略,并强制在编码器输出层而不是输入数据上执行一致性约束,从而优化了传统半监督学习中对密集任务适用性的“聚类假设”。此外,此框架灵活地支持多域数据以及从弱标签到像素级标注的学习场景。

项目快速启动

环境搭建

确保您的开发环境满足以下条件:

  • 操作系统: Ubuntu 18.04 LTS 或更高版本。
  • Python: 版本3.7或以上。
  • PyTorch: 至少1.1.0版本,推荐使用最新稳定版。
  • CUDA: 至少10.0版本。

安装必要的依赖项可以通过运行以下命令完成:

pip install -r requirements.txt

获取数据集

以Pascal VOC为例,首先下载原始数据并解压,然后补充Semantic Contours from Inverse Detectors提供的额外注释,整合后设置好数据路径。

训练模型

配置文件configs/config.json需设定相应参数,包括数据目录、GPU数量等。启动训练:

python train.py --config configs/config.json

监控训练过程可以利用TensorBoard:

tensorboard --logdir saved

预测与评估

准备预训练模型和待分割图像,进行预测并将结果保存为PNG格式:

python inference.py --config config.json --model best_model.pth --images images_folder

应用案例与最佳实践

利用弱标签

若要结合图像级别的标签辅助训练,首先使用pseudo_labels目录下的脚本生成伪标签,之后修改配置文件中的use_weak_labelsTrue,重新开始训练流程。

性能调优

  • 根据硬件资源调整n_gpu
  • 调节权重参数如unsupervised_wweakly_loss_w来平衡有监督与无监督损失。
  • 实验不同的超参数组合找到模型的最佳性能。

典型生态项目

尽管这个特定的项目主要关注于其自身的方法论实现,它的贡献在于为语义分割研究提供了一个新的方向,特别是在减少对大量标注数据依赖方面的创新。社区成员可通过 fork 此仓库进行扩展研究,比如融合其他领域的技术如自监督学习或利用CCT框架在新的数据集上的适应性实验,进而形成一个围绕半监督学习和语义分割方法的更广泛生态。


本指南提供了基本的入门步骤,深入了解CCT及其应用需要详细阅读项目文档及论文,实践过程中不断调整和验证是进步的关键。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5