半监督语义分割与交叉一致性训练(CCT)实战指南
2024-09-22 00:55:24作者:钟日瑜
项目介绍
CCT(Cross-Consistency Training)是一个基于CVPR 2020论文实现的半监督语义分割框架。它通过引入一系列新颖的扰动策略,并强制在编码器输出层而不是输入数据上执行一致性约束,从而优化了传统半监督学习中对密集任务适用性的“聚类假设”。此外,此框架灵活地支持多域数据以及从弱标签到像素级标注的学习场景。
项目快速启动
环境搭建
确保您的开发环境满足以下条件:
- 操作系统: Ubuntu 18.04 LTS 或更高版本。
- Python: 版本3.7或以上。
- PyTorch: 至少1.1.0版本,推荐使用最新稳定版。
- CUDA: 至少10.0版本。
安装必要的依赖项可以通过运行以下命令完成:
pip install -r requirements.txt
获取数据集
以Pascal VOC为例,首先下载原始数据并解压,然后补充Semantic Contours from Inverse Detectors提供的额外注释,整合后设置好数据路径。
训练模型
配置文件configs/config.json需设定相应参数,包括数据目录、GPU数量等。启动训练:
python train.py --config configs/config.json
监控训练过程可以利用TensorBoard:
tensorboard --logdir saved
预测与评估
准备预训练模型和待分割图像,进行预测并将结果保存为PNG格式:
python inference.py --config config.json --model best_model.pth --images images_folder
应用案例与最佳实践
利用弱标签
若要结合图像级别的标签辅助训练,首先使用pseudo_labels目录下的脚本生成伪标签,之后修改配置文件中的use_weak_labels为True,重新开始训练流程。
性能调优
- 根据硬件资源调整
n_gpu。 - 调节权重参数如
unsupervised_w和weakly_loss_w来平衡有监督与无监督损失。 - 实验不同的超参数组合找到模型的最佳性能。
典型生态项目
尽管这个特定的项目主要关注于其自身的方法论实现,它的贡献在于为语义分割研究提供了一个新的方向,特别是在减少对大量标注数据依赖方面的创新。社区成员可通过 fork 此仓库进行扩展研究,比如融合其他领域的技术如自监督学习或利用CCT框架在新的数据集上的适应性实验,进而形成一个围绕半监督学习和语义分割方法的更广泛生态。
本指南提供了基本的入门步骤,深入了解CCT及其应用需要详细阅读项目文档及论文,实践过程中不断调整和验证是进步的关键。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0135
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
502
3.65 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
298
347
一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
116
21
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.3 K
722
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1