半监督语义分割与交叉一致性训练(CCT)实战指南
2024-09-22 14:25:28作者:钟日瑜
项目介绍
CCT(Cross-Consistency Training)是一个基于CVPR 2020论文实现的半监督语义分割框架。它通过引入一系列新颖的扰动策略,并强制在编码器输出层而不是输入数据上执行一致性约束,从而优化了传统半监督学习中对密集任务适用性的“聚类假设”。此外,此框架灵活地支持多域数据以及从弱标签到像素级标注的学习场景。
项目快速启动
环境搭建
确保您的开发环境满足以下条件:
- 操作系统: Ubuntu 18.04 LTS 或更高版本。
- Python: 版本3.7或以上。
- PyTorch: 至少1.1.0版本,推荐使用最新稳定版。
- CUDA: 至少10.0版本。
安装必要的依赖项可以通过运行以下命令完成:
pip install -r requirements.txt
获取数据集
以Pascal VOC为例,首先下载原始数据并解压,然后补充Semantic Contours from Inverse Detectors提供的额外注释,整合后设置好数据路径。
训练模型
配置文件configs/config.json需设定相应参数,包括数据目录、GPU数量等。启动训练:
python train.py --config configs/config.json
监控训练过程可以利用TensorBoard:
tensorboard --logdir saved
预测与评估
准备预训练模型和待分割图像,进行预测并将结果保存为PNG格式:
python inference.py --config config.json --model best_model.pth --images images_folder
应用案例与最佳实践
利用弱标签
若要结合图像级别的标签辅助训练,首先使用pseudo_labels目录下的脚本生成伪标签,之后修改配置文件中的use_weak_labels为True,重新开始训练流程。
性能调优
- 根据硬件资源调整
n_gpu。 - 调节权重参数如
unsupervised_w和weakly_loss_w来平衡有监督与无监督损失。 - 实验不同的超参数组合找到模型的最佳性能。
典型生态项目
尽管这个特定的项目主要关注于其自身的方法论实现,它的贡献在于为语义分割研究提供了一个新的方向,特别是在减少对大量标注数据依赖方面的创新。社区成员可通过 fork 此仓库进行扩展研究,比如融合其他领域的技术如自监督学习或利用CCT框架在新的数据集上的适应性实验,进而形成一个围绕半监督学习和语义分割方法的更广泛生态。
本指南提供了基本的入门步骤,深入了解CCT及其应用需要详细阅读项目文档及论文,实践过程中不断调整和验证是进步的关键。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218