首页
/ vLLM项目中的大模型MoE资源需求分析与实践

vLLM项目中的大模型MoE资源需求分析与实践

2025-05-01 11:28:49作者:彭桢灵Jeremy

引言

在大型语言模型(Large Language Model)领域,混合专家模型(Mixture of Experts, MoE)因其能够在不显著增加计算成本的情况下扩展模型规模而备受关注。本文将以vLLM项目为背景,深入分析在本地推理环境下运行大型MoE模型(如Qwen3 235B-A22B)时的资源需求问题。

硬件环境考量

当前主流的高性能GPU包括A100/A800、H100/H800/H200等型号。这些GPU通常以8卡为一个节点进行部署。对于MoE模型推理,我们需要特别关注以下两个关键因素:

  1. 张量并行规模(tensor_parallel_size):决定了模型参数如何在多个GPU之间分配
  2. 专家系统(Experts)的分布与激活:MoE模型中只有部分专家会在推理时被激活

资源分配策略

张量并行配置

在实践中,通常建议将tensor_parallel_size设置为节点内的GPU数量(如8)。这种配置可以充分利用节点内的高速互联,实现高效的模型并行。对于Qwen3 235B这样的超大型模型:

  • 在H200节点上:单个节点即可满足需求
  • 在其他GPU节点上:通常需要2个节点协同工作

专家系统管理

vLLM在处理MoE模型时,会智能地管理专家系统的分布:

  1. 激活专家:保持在GPU内存中以供快速访问
  2. 非激活专家:可以卸载到CPU内存

需要注意的是,这种专家卸载机制确实会增加CPU内存的压力。对于资源受限的环境,可以考虑以下替代方案:

  • 使用专家并行(Expert Parallelism, EP)策略
  • 将模型分布在多个物理节点上

实践经验分享

根据实际测试数据,Qwen3 235B模型在tensor_parallel_size=8的配置下,大约需要59GB的显存。这一数据为资源规划提供了重要参考:

  • 对于H200节点:单个节点即可满足需求
  • 对于其他GPU节点:建议使用2个节点进行部署

结论

在vLLM框架下部署大型MoE模型时,合理的资源规划至关重要。通过优化张量并行配置和专家系统管理,可以在保证推理性能的同时,最大限度地提高硬件资源的利用率。对于不同规模的MoE模型,建议根据实际测试数据进行微调,以达到最佳的性能与资源平衡。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
182
2.11 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
205
282
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
960
570
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
543
70
pytorchpytorch
Ascend Extension for PyTorch
Python
58
87
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
399