SetFit多分类任务中预测概率低且不准确的解决方案
2025-07-01 16:27:03作者:卓炯娓
问题背景
在使用SetFit进行多分类任务时,开发者可能会遇到预测概率普遍偏低且不准确的情况。例如,在一个包含30个类别的文本意图分类任务中,即使输入与训练样本完全一致的文本(如"i'm busy"对应"busy"意图),模型输出的预测概率也分布在0.02-0.06之间,没有明显的类别区分。
原因分析
这种现象通常表明模型的嵌入层(embedding layer)训练成功,但分类头(classifier head)未能有效学习。具体表现为:
- 嵌入层能够将输入文本转换为有意义的向量表示
- 但分类器无法基于这些嵌入向量做出正确的分类决策
- 最终输出概率呈现均匀分布,缺乏置信度
解决方案
方法一:使用逻辑回归分类头
SetFit支持替换默认的分类头为逻辑回归模型,这通常能带来更好的分类效果:
from setfit import SetFitModel
from sklearn.linear_model import LogisticRegression
# 加载预训练模型
model = SetFitModel.from_pretrained('models')
# 替换为逻辑回归分类头
model.model_head = LogisticRegression()
# 重新训练分类头
trainer.train_classifier(train_dataset["text"], train_dataset["label"])
方法二:简化模型配置
在初始训练时,可以简化模型配置,避免使用复杂的可微分类头:
# 更简单的模型初始化方式
model = SetFitModel.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2')
方法三:数据子集验证
当遇到问题时,可以使用数据子集进行快速验证:
- 选择少量类别(如3-5个)
- 减少每类样本数量(如10-20个)
- 快速验证模型能否在小数据集上学习
最佳实践建议
-
分类头选择:对于大多数分类任务,逻辑回归分类头通常表现良好且训练快速
-
标签设置:在模型初始化时直接指定标签名称,便于后续使用:
model = SetFitModel.from_pretrained(..., labels=["economy", "business", "sports"]) -
训练监控:关注训练过程中的评估指标,确保分类器确实在学习
-
数据平衡:确保每个类别的样本数量相对平衡,避免类别不平衡问题
总结
SetFit作为一个高效的少样本学习框架,在多分类任务中表现优异。当遇到预测概率低且不准确的问题时,开发者应首先检查分类头的训练情况。采用逻辑回归分类头或简化模型配置通常能有效解决问题。通过小规模数据验证和合理的训练监控,可以快速定位并解决模型训练中的问题。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443