SetFit多分类任务中预测概率低且不准确的解决方案
2025-07-01 15:53:42作者:卓炯娓
问题背景
在使用SetFit进行多分类任务时,开发者可能会遇到预测概率普遍偏低且不准确的情况。例如,在一个包含30个类别的文本意图分类任务中,即使输入与训练样本完全一致的文本(如"i'm busy"对应"busy"意图),模型输出的预测概率也分布在0.02-0.06之间,没有明显的类别区分。
原因分析
这种现象通常表明模型的嵌入层(embedding layer)训练成功,但分类头(classifier head)未能有效学习。具体表现为:
- 嵌入层能够将输入文本转换为有意义的向量表示
- 但分类器无法基于这些嵌入向量做出正确的分类决策
- 最终输出概率呈现均匀分布,缺乏置信度
解决方案
方法一:使用逻辑回归分类头
SetFit支持替换默认的分类头为逻辑回归模型,这通常能带来更好的分类效果:
from setfit import SetFitModel
from sklearn.linear_model import LogisticRegression
# 加载预训练模型
model = SetFitModel.from_pretrained('models')
# 替换为逻辑回归分类头
model.model_head = LogisticRegression()
# 重新训练分类头
trainer.train_classifier(train_dataset["text"], train_dataset["label"])
方法二:简化模型配置
在初始训练时,可以简化模型配置,避免使用复杂的可微分类头:
# 更简单的模型初始化方式
model = SetFitModel.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2')
方法三:数据子集验证
当遇到问题时,可以使用数据子集进行快速验证:
- 选择少量类别(如3-5个)
- 减少每类样本数量(如10-20个)
- 快速验证模型能否在小数据集上学习
最佳实践建议
-
分类头选择:对于大多数分类任务,逻辑回归分类头通常表现良好且训练快速
-
标签设置:在模型初始化时直接指定标签名称,便于后续使用:
model = SetFitModel.from_pretrained(..., labels=["economy", "business", "sports"]) -
训练监控:关注训练过程中的评估指标,确保分类器确实在学习
-
数据平衡:确保每个类别的样本数量相对平衡,避免类别不平衡问题
总结
SetFit作为一个高效的少样本学习框架,在多分类任务中表现优异。当遇到预测概率低且不准确的问题时,开发者应首先检查分类头的训练情况。采用逻辑回归分类头或简化模型配置通常能有效解决问题。通过小规模数据验证和合理的训练监控,可以快速定位并解决模型训练中的问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
426
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
335
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
265
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
25
30