SetFit项目v1.1.1版本发布:支持ModernBERT与训练报告优化
SetFit是一个基于Sentence Transformers的轻量级文本分类框架,它通过对比学习的方式在小样本场景下表现出色。该项目由Hugging Face团队维护,旨在为NLP开发者提供一个高效、易用的文本分类解决方案。
版本亮点
SetFit v1.1.1版本带来了两个重要的改进,这些改进显著提升了框架的实用性和兼容性。
1. 兼容ModernBERT等最新Transformer模型
本次更新最重要的特性是增加了对transformers库v4.45.2及以上版本的支持,包括最新的ModernBERT模型(如nomic-ai/modernbert-embed-base)。ModernBERT是一种改进的BERT架构,在嵌入表示和微调性能上都有显著提升。
开发者现在可以轻松地将SetFit与现代BERT变体结合使用。以下是一个典型的使用ModernBERT进行微调的代码示例:
from datasets import load_dataset
from setfit import SetFitModel, Trainer, TrainingArguments
# 加载数据集
dataset = load_dataset("sst2")
# 准备训练数据
train_dataset = dataset["train"].select(range(200))
eval_dataset = dataset["validation"].select(range(200))
# 加载ModernBERT模型
model = SetFitModel.from_pretrained(
"nomic-ai/modernbert-embed-base",
labels=["negative", "positive"],
)
# 配置训练参数
args = TrainingArguments(
batch_size=16,
max_steps=100,
logging_steps=10,
eval_strategy="steps",
eval_steps=10,
eval_max_steps=100,
)
# 创建训练器并开始训练
trainer = Trainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
metric="accuracy",
column_mapping={"sentence": "text", "label": "label"}
)
trainer.train()
2. 训练报告控制优化
另一个重要修复是解决了report_to="none"参数被忽略的问题。在之前的版本中,即使用户明确指定不向任何平台报告训练指标,系统仍可能尝试发送报告。这个修复对于注重隐私或需要在受限网络环境中运行的开发者尤为重要。
技术细节
-
兼容性改进:新版本确保了与transformers库v4.45.2到v4.48.0之间的兼容性,解决了因transformers内部API变化导致的问题。
-
ModernBERT支持:ModernBERT模型采用了改进的架构设计,在保持BERT核心优势的同时,通过优化嵌入层和注意力机制提升了性能。SetFit现在可以充分利用这些改进。
-
训练控制增强:修复后的
report_to参数行为更加符合预期,开发者可以完全控制训练指标的记录和上报行为。
实际应用建议
对于考虑升级到v1.1.1版本的开发者:
-
如果需要使用最新的Transformer模型(如ModernBERT),建议尽快升级。
-
在隐私敏感场景下,可以利用修复后的
report_to="none"功能确保训练数据不外泄。 -
升级时注意检查transformers库的版本兼容性,建议使用v4.45.2或更高版本。
SetFit v1.1.1的这些改进进一步巩固了其作为小样本文本分类首选框架的地位,特别是对于希望利用最新Transformer模型但又需要轻量级解决方案的开发者而言。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00