SetFit项目v1.1.1版本发布:支持ModernBERT与训练报告优化
SetFit是一个基于Sentence Transformers的轻量级文本分类框架,它通过对比学习的方式在小样本场景下表现出色。该项目由Hugging Face团队维护,旨在为NLP开发者提供一个高效、易用的文本分类解决方案。
版本亮点
SetFit v1.1.1版本带来了两个重要的改进,这些改进显著提升了框架的实用性和兼容性。
1. 兼容ModernBERT等最新Transformer模型
本次更新最重要的特性是增加了对transformers库v4.45.2及以上版本的支持,包括最新的ModernBERT模型(如nomic-ai/modernbert-embed-base)。ModernBERT是一种改进的BERT架构,在嵌入表示和微调性能上都有显著提升。
开发者现在可以轻松地将SetFit与现代BERT变体结合使用。以下是一个典型的使用ModernBERT进行微调的代码示例:
from datasets import load_dataset
from setfit import SetFitModel, Trainer, TrainingArguments
# 加载数据集
dataset = load_dataset("sst2")
# 准备训练数据
train_dataset = dataset["train"].select(range(200))
eval_dataset = dataset["validation"].select(range(200))
# 加载ModernBERT模型
model = SetFitModel.from_pretrained(
"nomic-ai/modernbert-embed-base",
labels=["negative", "positive"],
)
# 配置训练参数
args = TrainingArguments(
batch_size=16,
max_steps=100,
logging_steps=10,
eval_strategy="steps",
eval_steps=10,
eval_max_steps=100,
)
# 创建训练器并开始训练
trainer = Trainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
metric="accuracy",
column_mapping={"sentence": "text", "label": "label"}
)
trainer.train()
2. 训练报告控制优化
另一个重要修复是解决了report_to="none"
参数被忽略的问题。在之前的版本中,即使用户明确指定不向任何平台报告训练指标,系统仍可能尝试发送报告。这个修复对于注重隐私或需要在受限网络环境中运行的开发者尤为重要。
技术细节
-
兼容性改进:新版本确保了与transformers库v4.45.2到v4.48.0之间的兼容性,解决了因transformers内部API变化导致的问题。
-
ModernBERT支持:ModernBERT模型采用了改进的架构设计,在保持BERT核心优势的同时,通过优化嵌入层和注意力机制提升了性能。SetFit现在可以充分利用这些改进。
-
训练控制增强:修复后的
report_to
参数行为更加符合预期,开发者可以完全控制训练指标的记录和上报行为。
实际应用建议
对于考虑升级到v1.1.1版本的开发者:
-
如果需要使用最新的Transformer模型(如ModernBERT),建议尽快升级。
-
在隐私敏感场景下,可以利用修复后的
report_to="none"
功能确保训练数据不外泄。 -
升级时注意检查transformers库的版本兼容性,建议使用v4.45.2或更高版本。
SetFit v1.1.1的这些改进进一步巩固了其作为小样本文本分类首选框架的地位,特别是对于希望利用最新Transformer模型但又需要轻量级解决方案的开发者而言。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









