SetFit项目:如何利用微调后的嵌入层构建自定义分类模型
2025-07-01 13:29:40作者:廉皓灿Ida
在自然语言处理领域,SetFit作为一个高效的少样本学习框架,通常采用预训练语言模型生成文本嵌入,然后配合分类头完成下游任务。然而在实际应用中,开发者有时需要将SetFit生成的嵌入层与自定义的分类模型结合使用,特别是当需要TensorFlow实现特定分类架构时。
SetFit架构的核心组成
SetFit框架主要包含两个关键组件:文本嵌入模型和分类头。文本嵌入模型负责将输入文本转换为高维向量表示,这部分通常基于Transformer架构;分类头则负责根据这些嵌入向量进行最终的分类预测,SetFit默认支持scikit-learn和PyTorch两种实现。
自定义分类头的实现方案
当开发者需要使用TensorFlow实现特定分类逻辑时,可以采用以下工作流程:
-
训练SetFit嵌入模型:首先使用SetFit框架训练文本嵌入模型,可以选择默认的scikit-learn分类头进行初步训练。这一步骤会优化嵌入层的参数,使其能够更好地捕捉文本的语义特征。
-
提取文本嵌入:训练完成后,通过SetFit模型的
.encode()方法获取文本的嵌入表示。这些嵌入向量已经针对目标任务进行了优化,包含了丰富的语义信息。 -
构建TF分类头:在TensorFlow中实现自定义的分类架构,可以包括各种复杂的神经网络结构,如带有注意力机制的LSTM、CNN或其他特定设计的模型。
-
训练完整模型:将SetFit生成的嵌入向量作为输入,训练TensorFlow分类头。这种分离训练的方式既利用了SetFit在少样本场景下的优势,又保留了使用TensorFlow实现复杂模型的灵活性。
技术优势与应用场景
这种混合架构特别适合以下场景:
- 需要特定神经网络结构的分类任务
- 已有基于TensorFlow的模型需要与最新NLP技术结合
- 对模型推理性能有特殊要求的应用
- 需要利用TensorFlow特有功能(如TPU加速)的项目
通过这种灵活的组合方式,开发者可以在保持SetFit嵌入层高效性的同时,充分发挥TensorFlow在构建复杂模型方面的优势,实现更加定制化的文本分类解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350