首页
/ GaussianSTORM开源项目教程

GaussianSTORM开源项目教程

2025-05-22 14:52:25作者:秋泉律Samson

1. 项目介绍

GaussianSTORM是一个基于PyTorch的开源项目,它实现了STORM(Spatio-Temporal Reconstruction Model for Large-Scale Outdoor Scenes)模型。该模型是一种用于大规模户外场景的时空重建方法,能够从稀疏的多视角序列中快速、自监督地重建动态场景。它同时学习3D高斯分布和场景流,支持实时渲染和运动分割,并且在动态区域上比场景优化和其他通用模型具有更高的性能。

2. 项目快速启动

环境准备

  • CUDA 12.1
  • PyTorch 2.3
  • NVIDIA A100(或其他兼容GPU)

克隆项目

git clone https://github.com/NVlabs/GaussianSTORM.git
cd GaussianSTORM

创建conda环境

conda create -n storm python=3.10 -y
conda activate storm

安装Python依赖

pip install -r requirements.txt

安装gsplat(用于批处理渲染支持)

pip install git+https://github.com/nerfstudio-project/gsplat.git@2b0de894232d21e8963179a7bbbd315f27c52c9c

快速实验

我们提供了一个Waymo Open Dataset的子集(3个序列)用于快速实验。

下载数据子集(约600MB)

gdown 14fapsAGoMCQ5Ky82cg2X6bk-mLQ7fdCF
tar -xf STORM_subset.tar.gz

运行单GPU推理演示

python inference.py \
--project storm_playground --exp_name visualization \
--data_root data/STORM_subset \
--model STORM-B/8 --num_motion_tokens 16 \
--use_sky_token --use_affine_token \
--load_depth --load_flow --load_ground \
--load_from $CKPT_PTH

请注意,CKPT_PTH指的是检查点路径。由于官方检查点目前无法提供,请参考问题页面获取非官方检查点。

3. 应用案例和最佳实践

数据准备

为了准备Waymo Open Dataset,请参考Waymo Data的官方指南。对于NuScenes和Argoverse2数据集,目前尚未包含准备指南,但可能会根据需求添加。

训练模型

以下是一个多GPU训练的示例,用于重现论文中的STORM-B/8模型:

torchrun --nproc_per_node=8 main_storm.py \
--project 0504_storm \
--exp_name 0504_pixel_storm \
--data_root ../storm2.3/data/STORM2
...
# 请替换为您的数据根目录
--batch_size 4 --num_iterations 100000 --lr_sched constant \
--model STORM-B/8 --num_motion_tokens 16 \
--use_sky_token --use_affine_token \
--load_depth --load_flow --load_ground \
--enable_depth_loss --enable_flow_reg_loss --flow_reg_coeff 0.005 --enable_sky_opacity_loss \
--enable_perceptual_loss --perceptual_loss_start_iter 5000 \
--enable_wandb \
--auto_resume

评估模型

torchrun --nproc_per_node=8 main_storm.py \
--project 0504_storm \
--exp_name 0504_pixel_storm \
--data_root ../storm2.3/data/STORM2
...
# 请替换为您的数据根目录
--batch_size 4 --num_iterations 100000 --lr_sched constant \
--model STORM-B/8 --num_motion_tokens 16 \
--use_sky_token --use_affine_token \
--load_depth --load_flow --load_ground \
--enable_depth_loss --enable_flow_reg_loss --flow_reg_coeff 0.005 --enable_sky_opacity_loss \
--enable_perceptual_loss --perceptual_loss_start_iter 5000 \
--auto_resume \
--evaluate

4. 典型生态项目

目前,GaussianSTORM项目主要围绕大规模户外场景的时空重建。在开源社区中,类似的项目还包括用于3D重建、场景理解和其他计算机视觉任务的项目。例如,NERF(Neural Radiance Fields)和PointNet等,都是与GaussianSTORM互补的开源项目,共同推动了计算机视觉领域的发展。

登录后查看全文

项目优选

收起
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
566
410
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
125
208
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
75
145
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
430
38
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
253
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
693
91
folibfolib
FOLib 是一个为Ai研发而生的、全语言制品库和供应链服务平台
Java
42
2
CS-BooksCS-Books
🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~
97
13
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
298
1.03 K