首页
/ GaussianSTORM开源项目教程

GaussianSTORM开源项目教程

2025-05-22 20:14:49作者:秋泉律Samson

1. 项目介绍

GaussianSTORM是一个基于PyTorch的开源项目,它实现了STORM(Spatio-Temporal Reconstruction Model for Large-Scale Outdoor Scenes)模型。该模型是一种用于大规模户外场景的时空重建方法,能够从稀疏的多视角序列中快速、自监督地重建动态场景。它同时学习3D高斯分布和场景流,支持实时渲染和运动分割,并且在动态区域上比场景优化和其他通用模型具有更高的性能。

2. 项目快速启动

环境准备

  • CUDA 12.1
  • PyTorch 2.3
  • NVIDIA A100(或其他兼容GPU)

克隆项目

git clone https://github.com/NVlabs/GaussianSTORM.git
cd GaussianSTORM

创建conda环境

conda create -n storm python=3.10 -y
conda activate storm

安装Python依赖

pip install -r requirements.txt

安装gsplat(用于批处理渲染支持)

pip install git+https://github.com/nerfstudio-project/gsplat.git@2b0de894232d21e8963179a7bbbd315f27c52c9c

快速实验

我们提供了一个Waymo Open Dataset的子集(3个序列)用于快速实验。

下载数据子集(约600MB)

gdown 14fapsAGoMCQ5Ky82cg2X6bk-mLQ7fdCF
tar -xf STORM_subset.tar.gz

运行单GPU推理演示

python inference.py \
--project storm_playground --exp_name visualization \
--data_root data/STORM_subset \
--model STORM-B/8 --num_motion_tokens 16 \
--use_sky_token --use_affine_token \
--load_depth --load_flow --load_ground \
--load_from $CKPT_PTH

请注意,CKPT_PTH指的是检查点路径。由于官方检查点目前无法提供,请参考问题页面获取非官方检查点。

3. 应用案例和最佳实践

数据准备

为了准备Waymo Open Dataset,请参考Waymo Data的官方指南。对于NuScenes和Argoverse2数据集,目前尚未包含准备指南,但可能会根据需求添加。

训练模型

以下是一个多GPU训练的示例,用于重现论文中的STORM-B/8模型:

torchrun --nproc_per_node=8 main_storm.py \
--project 0504_storm \
--exp_name 0504_pixel_storm \
--data_root ../storm2.3/data/STORM2
...
# 请替换为您的数据根目录
--batch_size 4 --num_iterations 100000 --lr_sched constant \
--model STORM-B/8 --num_motion_tokens 16 \
--use_sky_token --use_affine_token \
--load_depth --load_flow --load_ground \
--enable_depth_loss --enable_flow_reg_loss --flow_reg_coeff 0.005 --enable_sky_opacity_loss \
--enable_perceptual_loss --perceptual_loss_start_iter 5000 \
--enable_wandb \
--auto_resume

评估模型

torchrun --nproc_per_node=8 main_storm.py \
--project 0504_storm \
--exp_name 0504_pixel_storm \
--data_root ../storm2.3/data/STORM2
...
# 请替换为您的数据根目录
--batch_size 4 --num_iterations 100000 --lr_sched constant \
--model STORM-B/8 --num_motion_tokens 16 \
--use_sky_token --use_affine_token \
--load_depth --load_flow --load_ground \
--enable_depth_loss --enable_flow_reg_loss --flow_reg_coeff 0.005 --enable_sky_opacity_loss \
--enable_perceptual_loss --perceptual_loss_start_iter 5000 \
--auto_resume \
--evaluate

4. 典型生态项目

目前,GaussianSTORM项目主要围绕大规模户外场景的时空重建。在开源社区中,类似的项目还包括用于3D重建、场景理解和其他计算机视觉任务的项目。例如,NERF(Neural Radiance Fields)和PointNet等,都是与GaussianSTORM互补的开源项目,共同推动了计算机视觉领域的发展。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K
kernelkernel
deepin linux kernel
C
22
6
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
503
39
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
331
10
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
277
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70