GaussianSTORM开源项目教程
2025-05-22 16:06:59作者:秋泉律Samson
1. 项目介绍
GaussianSTORM是一个基于PyTorch的开源项目,它实现了STORM(Spatio-Temporal Reconstruction Model for Large-Scale Outdoor Scenes)模型。该模型是一种用于大规模户外场景的时空重建方法,能够从稀疏的多视角序列中快速、自监督地重建动态场景。它同时学习3D高斯分布和场景流,支持实时渲染和运动分割,并且在动态区域上比场景优化和其他通用模型具有更高的性能。
2. 项目快速启动
环境准备
- CUDA 12.1
- PyTorch 2.3
- NVIDIA A100(或其他兼容GPU)
克隆项目
git clone https://github.com/NVlabs/GaussianSTORM.git
cd GaussianSTORM
创建conda环境
conda create -n storm python=3.10 -y
conda activate storm
安装Python依赖
pip install -r requirements.txt
安装gsplat(用于批处理渲染支持)
pip install git+https://github.com/nerfstudio-project/gsplat.git@2b0de894232d21e8963179a7bbbd315f27c52c9c
快速实验
我们提供了一个Waymo Open Dataset的子集(3个序列)用于快速实验。
下载数据子集(约600MB)
gdown 14fapsAGoMCQ5Ky82cg2X6bk-mLQ7fdCF
tar -xf STORM_subset.tar.gz
运行单GPU推理演示
python inference.py \
--project storm_playground --exp_name visualization \
--data_root data/STORM_subset \
--model STORM-B/8 --num_motion_tokens 16 \
--use_sky_token --use_affine_token \
--load_depth --load_flow --load_ground \
--load_from $CKPT_PTH
请注意,CKPT_PTH指的是检查点路径。由于官方检查点目前无法提供,请参考问题页面获取非官方检查点。
3. 应用案例和最佳实践
数据准备
为了准备Waymo Open Dataset,请参考Waymo Data的官方指南。对于NuScenes和Argoverse2数据集,目前尚未包含准备指南,但可能会根据需求添加。
训练模型
以下是一个多GPU训练的示例,用于重现论文中的STORM-B/8模型:
torchrun --nproc_per_node=8 main_storm.py \
--project 0504_storm \
--exp_name 0504_pixel_storm \
--data_root ../storm2.3/data/STORM2
...
# 请替换为您的数据根目录
--batch_size 4 --num_iterations 100000 --lr_sched constant \
--model STORM-B/8 --num_motion_tokens 16 \
--use_sky_token --use_affine_token \
--load_depth --load_flow --load_ground \
--enable_depth_loss --enable_flow_reg_loss --flow_reg_coeff 0.005 --enable_sky_opacity_loss \
--enable_perceptual_loss --perceptual_loss_start_iter 5000 \
--enable_wandb \
--auto_resume
评估模型
torchrun --nproc_per_node=8 main_storm.py \
--project 0504_storm \
--exp_name 0504_pixel_storm \
--data_root ../storm2.3/data/STORM2
...
# 请替换为您的数据根目录
--batch_size 4 --num_iterations 100000 --lr_sched constant \
--model STORM-B/8 --num_motion_tokens 16 \
--use_sky_token --use_affine_token \
--load_depth --load_flow --load_ground \
--enable_depth_loss --enable_flow_reg_loss --flow_reg_coeff 0.005 --enable_sky_opacity_loss \
--enable_perceptual_loss --perceptual_loss_start_iter 5000 \
--auto_resume \
--evaluate
4. 典型生态项目
目前,GaussianSTORM项目主要围绕大规模户外场景的时空重建。在开源社区中,类似的项目还包括用于3D重建、场景理解和其他计算机视觉任务的项目。例如,NERF(Neural Radiance Fields)和PointNet等,都是与GaussianSTORM互补的开源项目,共同推动了计算机视觉领域的发展。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896