在PyTorch TensorRT中加载TS模型时的CMake配置要点
2025-06-29 00:17:48作者:温艾琴Wonderful
概述
在使用PyTorch TensorRT进行模型部署时,开发者经常需要将训练好的PyTorch模型转换为TorchScript格式(.ts文件)并在C++环境中加载运行。本文针对Jetson Orin NX平台上使用CMake构建C++项目时遇到的链接问题,详细介绍了正确的配置方法。
核心问题分析
当开发者尝试在C++中加载TorchScript模型时,常见的错误是运行时找不到TensorRT相关的符号。这通常是由于CMake配置中缺少必要的链接库导致的。即使代码能够编译通过,运行时仍可能出现"undefined symbol"错误。
解决方案详解
基本CMake配置
首先,我们需要配置基本的CMake环境来支持PyTorch:
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(custom_ops)
# 自动获取PyTorch的CMake路径
execute_process(
COMMAND python3 -c "import torch; print(torch.utils.cmake_prefix_path)"
OUTPUT_VARIABLE PYTORCH_CMAKE_PREFIX_PATH
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(CMAKE_PREFIX_PATH "${PYTORCH_CMAKE_PREFIX_PATH}")
find_package(Torch REQUIRED)
add_executable(example-app example-app.cpp)
target_include_directories(example-app PRIVATE "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/include")
target_link_libraries(example-app torch)
set_property(TARGET example-app PROPERTY CXX_STANDARD 17)
关键补充配置
上述配置虽然能完成编译,但运行时会出现问题。关键在于需要显式链接TensorRT运行时库:
target_link_libraries(example-app
-Wl,--no-as-needed
"/usr/local/lib/python3.8/dist-packages/torch_tensorrt/lib/libtorchtrt.so"
)
技术原理说明
这里使用了-Wl,--no-as-needed链接器选项,这是解决此类问题的关键。默认情况下,链接器会优化掉看似未使用的库,但由于TensorRT运行时库的加载方式特殊,我们需要强制保留这个依赖。
实际应用建议
- 路径确认:确保TensorRT库路径与您系统中的实际安装位置一致
- 版本兼容性:检查PyTorch、TensorRT和CUDA版本之间的兼容性
- 交叉编译:在Jetson等嵌入式平台开发时,注意使用正确的工具链
总结
正确配置CMake对于PyTorch TensorRT项目的成功部署至关重要。通过本文介绍的方法,开发者可以解决常见的运行时符号未定义问题,确保TorchScript模型能够顺利加载和执行。记住,在链接TensorRT相关库时,必须使用-Wl,--no-as-needed选项来防止链接器优化掉必要的依赖。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
305
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
872