在PyTorch TensorRT中加载TS模型时的CMake配置要点
2025-06-29 08:51:22作者:温艾琴Wonderful
概述
在使用PyTorch TensorRT进行模型部署时,开发者经常需要将训练好的PyTorch模型转换为TorchScript格式(.ts文件)并在C++环境中加载运行。本文针对Jetson Orin NX平台上使用CMake构建C++项目时遇到的链接问题,详细介绍了正确的配置方法。
核心问题分析
当开发者尝试在C++中加载TorchScript模型时,常见的错误是运行时找不到TensorRT相关的符号。这通常是由于CMake配置中缺少必要的链接库导致的。即使代码能够编译通过,运行时仍可能出现"undefined symbol"错误。
解决方案详解
基本CMake配置
首先,我们需要配置基本的CMake环境来支持PyTorch:
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(custom_ops)
# 自动获取PyTorch的CMake路径
execute_process(
COMMAND python3 -c "import torch; print(torch.utils.cmake_prefix_path)"
OUTPUT_VARIABLE PYTORCH_CMAKE_PREFIX_PATH
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(CMAKE_PREFIX_PATH "${PYTORCH_CMAKE_PREFIX_PATH}")
find_package(Torch REQUIRED)
add_executable(example-app example-app.cpp)
target_include_directories(example-app PRIVATE "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/include")
target_link_libraries(example-app torch)
set_property(TARGET example-app PROPERTY CXX_STANDARD 17)
关键补充配置
上述配置虽然能完成编译,但运行时会出现问题。关键在于需要显式链接TensorRT运行时库:
target_link_libraries(example-app
-Wl,--no-as-needed
"/usr/local/lib/python3.8/dist-packages/torch_tensorrt/lib/libtorchtrt.so"
)
技术原理说明
这里使用了-Wl,--no-as-needed链接器选项,这是解决此类问题的关键。默认情况下,链接器会优化掉看似未使用的库,但由于TensorRT运行时库的加载方式特殊,我们需要强制保留这个依赖。
实际应用建议
- 路径确认:确保TensorRT库路径与您系统中的实际安装位置一致
- 版本兼容性:检查PyTorch、TensorRT和CUDA版本之间的兼容性
- 交叉编译:在Jetson等嵌入式平台开发时,注意使用正确的工具链
总结
正确配置CMake对于PyTorch TensorRT项目的成功部署至关重要。通过本文介绍的方法,开发者可以解决常见的运行时符号未定义问题,确保TorchScript模型能够顺利加载和执行。记住,在链接TensorRT相关库时,必须使用-Wl,--no-as-needed选项来防止链接器优化掉必要的依赖。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492