Forward项目ONNX模型推理使用指南
2025-06-09 08:15:13作者:廉皓灿Ida
前言
Forward是一个高性能的深度学习推理框架,支持多种模型格式的推理加速。本文将重点介绍如何使用Forward框架进行ONNX模型的推理,包括环境准备、模型导出、项目构建以及各种精度模式下的推理实现。
环境准备
在使用Forward进行ONNX模型推理前,需要确保系统满足以下环境要求:
-
GPU环境:
- NVIDIA CUDA >= 10.0
- CuDNN >= 7
- 推荐版本:CUDA 10.2
-
推理框架:
- TensorRT >= 7.0.0.11
- 推荐版本:TensorRT-7.2.1.6
-
构建工具:
- CMake >= 3.12.2
- GCC >= 5.4.0
- ld >= 2.26.1
ONNX模型导出
ONNX(Open Neural Network Exchange)是一种开放的模型格式,支持跨框架的模型转换。我们可以将训练好的PyTorch、TensorFlow等框架的模型导出为ONNX格式。
PyTorch模型导出示例
import torch
import torch.onnx
import torchvision.models as models
# 加载预训练模型
model = models.resnet50(pretrained=True)
model.cpu()
model.eval()
# 准备示例输入
inputs = torch.randn(1, 3, 224, 224)
# 导出JIT模型用于验证
traced_model = torch.jit.trace(model, inputs)
torch.jit.save(traced_model, 'resnet50.pth')
# 导出ONNX模型
input_names = ["input"] # 输入节点名称
output_names = ["output"] # 输出节点名称
torch.onnx.export(model, inputs, 'resnet50.onnx',
verbose=True,
input_names=input_names,
output_names=output_names)
注意事项:
- 导出前务必将模型设置为eval模式
- 输入输出名称可通过可视化工具查看
- 建议同时导出JIT模型用于精度验证
项目构建
Forward支持灵活的构建选项,可以根据需求启用或禁用特定功能:
mkdir build
cd build
cmake .. \
-DTensorRT_ROOT="TensorRT安装路径" \
-DENABLE_ONNX=ON \ # 启用ONNX支持
-DENABLE_DYNAMIC_BATCH=ON \ # 启用动态批量支持
-DENABLE_UNIT_TESTS=ON # 启用单元测试
make -j
关键构建选项说明:
TensorRT_ROOT:指定TensorRT的安装路径ENABLE_ONNX:启用ONNX模型支持ENABLE_DYNAMIC_BATCH:启用动态批量处理功能BUILD_PYTHON_LIB:是否构建Python接口
动态批量处理
Forward支持动态批量输入,这在处理可变大小输入时非常有用。
使用要求
- TensorRT版本需大于7.1.x.x
- INT8模式下也可使用动态批量
配置方式
CMake配置:
-DENABLE_DYNAMIC_BATCH=ON
Builder配置:
- C++接口:
onnx_builder.SetOptBatchSize(opt_batch_size); - Python接口:
onnx_builder.set_opt_batch_size(opt_batch_size)
ONNX模型要求
- 导出ONNX模型时需要指定动态维度:
dynamic_axes = {'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}} torch.onnx.export(..., dynamic_axes=dynamic_axes) - 仅支持batch_size作为动态维度
- batch_size必须是输入的第一个维度
C++接口使用
基本使用流程
// 1. 创建Builder
fwd::OnnxBuilder builder;
builder.SetInferMode("float32"); // 设置推理精度
// 2. 构建Engine
auto engine = builder.Build("model.onnx");
// 3. 准备输入数据
std::vector<float> input_data(1*3*224*224, 0);
fwd::Tensor input = {input_data.data(), {1,3,224,224}, fwd::DataType::FLOAT, fwd::DeviceType::CPU};
// 4. 执行推理
std::vector<fwd::Tensor> outputs;
engine->Forward({input}, outputs);
// 5. 处理输出
for(auto& out : outputs) {
std::vector<float> host_data(out.dims[0]*out.dims[1]*out.dims[2]*out.dims[3]);
MemcpyDeviceToHost(host_data.data(), out.data, host_data.size());
}
INT8量化推理
// 1. 实现数据流接口
class MyBatchStream : public IBatchStream {
// 实现next、getBatch等方法
};
// 2. 创建量化器
auto stream = std::make_shared<MyBatchStream>();
auto calibrator = std::make_shared<TrtInt8Calibrator>(stream, "calib.cache", "entropy");
// 3. 构建INT8引擎
builder.SetCalibrator(calibrator);
builder.SetInferMode("int8");
auto engine = builder.Build("model.onnx");
BERT模型INT8量化
BERT模型量化需要分两步进行:
// 1. 生成校准文件
builder.SetInferMode("int8_calib");
auto calib_engine = builder.Build("bert.onnx");
// 2. 使用校准文件构建推理引擎
builder.SetInferMode("int8");
auto infer_engine = builder.Build("bert.onnx");
Python接口使用
基本使用示例
import forward
import numpy as np
# 1. 创建Builder
builder = forward.OnnxBuilder()
builder.set_mode("float32") # 设置推理精度
# 2. 构建Engine
engine = builder.build("model.onnx")
# 3. 执行推理
input_data = np.random.rand(1,3,224,224).astype(np.float32)
outputs = engine.forward([input_data])
INT8量化推理
class MyBatchStream(forward.IPyBatchStream):
# 实现数据流接口
pass
# 创建量化器
stream = MyBatchStream()
calibrator = forward.TrtInt8Calibrator(stream, "calib.cache", "minmax")
# 构建INT8引擎
builder.set_calibrator(calibrator)
builder.set_mode("int8")
engine = builder.build("model.onnx")
手动量化Scale设置
在某些场景下,我们可能需要手动设置各层的量化scale值:
-
准备scale文件,格式为:
LayerName: scale_value -
C++使用方式:
auto calibrator = std::make_shared<TrtInt8Calibrator>("cache.calib", "entropy", 1); calibrator->setScaleFile("scales.txt"); -
Python使用方式:
calibrator = forward.TrtInt8Calibrator("cache.calib", "entropy", 1) calibrator.set_scale_file("scales.txt")
最佳实践建议
-
模型导出:
- 导出ONNX模型时建议同时导出JIT模型用于精度验证
- 确保输入输出名称设置正确
-
量化校准:
- 校准数据集应具有代表性
- BERT模型建议使用minmax校准方法
- 普通CNN模型可以使用entropy校准方法
-
性能优化:
- 合理设置opt_batch_size以获得最佳性能
- FP16模式通常能在保持精度的同时提升性能
- INT8模式可显著提升性能但可能影响精度
-
错误排查:
- 检查TensorRT版本是否匹配
- 确保CUDA环境配置正确
- 验证模型输入输出是否符合预期
通过本文介绍,您应该已经掌握了使用Forward框架进行ONNX模型推理的完整流程。根据实际应用场景选择合适的精度模式和配置,可以获得最佳的推理性能。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26