Forward项目ONNX模型推理使用指南
2025-06-09 08:54:10作者:廉皓灿Ida
前言
Forward是一个高性能的深度学习推理框架,支持多种模型格式的推理加速。本文将重点介绍如何使用Forward框架进行ONNX模型的推理,包括环境准备、模型导出、项目构建以及各种精度模式下的推理实现。
环境准备
在使用Forward进行ONNX模型推理前,需要确保系统满足以下环境要求:
-
GPU环境:
- NVIDIA CUDA >= 10.0
- CuDNN >= 7
- 推荐版本:CUDA 10.2
-
推理框架:
- TensorRT >= 7.0.0.11
- 推荐版本:TensorRT-7.2.1.6
-
构建工具:
- CMake >= 3.12.2
- GCC >= 5.4.0
- ld >= 2.26.1
ONNX模型导出
ONNX(Open Neural Network Exchange)是一种开放的模型格式,支持跨框架的模型转换。我们可以将训练好的PyTorch、TensorFlow等框架的模型导出为ONNX格式。
PyTorch模型导出示例
import torch
import torch.onnx
import torchvision.models as models
# 加载预训练模型
model = models.resnet50(pretrained=True)
model.cpu()
model.eval()
# 准备示例输入
inputs = torch.randn(1, 3, 224, 224)
# 导出JIT模型用于验证
traced_model = torch.jit.trace(model, inputs)
torch.jit.save(traced_model, 'resnet50.pth')
# 导出ONNX模型
input_names = ["input"] # 输入节点名称
output_names = ["output"] # 输出节点名称
torch.onnx.export(model, inputs, 'resnet50.onnx',
verbose=True,
input_names=input_names,
output_names=output_names)
注意事项:
- 导出前务必将模型设置为eval模式
- 输入输出名称可通过可视化工具查看
- 建议同时导出JIT模型用于精度验证
项目构建
Forward支持灵活的构建选项,可以根据需求启用或禁用特定功能:
mkdir build
cd build
cmake .. \
-DTensorRT_ROOT="TensorRT安装路径" \
-DENABLE_ONNX=ON \ # 启用ONNX支持
-DENABLE_DYNAMIC_BATCH=ON \ # 启用动态批量支持
-DENABLE_UNIT_TESTS=ON # 启用单元测试
make -j
关键构建选项说明:
TensorRT_ROOT:指定TensorRT的安装路径ENABLE_ONNX:启用ONNX模型支持ENABLE_DYNAMIC_BATCH:启用动态批量处理功能BUILD_PYTHON_LIB:是否构建Python接口
动态批量处理
Forward支持动态批量输入,这在处理可变大小输入时非常有用。
使用要求
- TensorRT版本需大于7.1.x.x
- INT8模式下也可使用动态批量
配置方式
CMake配置:
-DENABLE_DYNAMIC_BATCH=ON
Builder配置:
- C++接口:
onnx_builder.SetOptBatchSize(opt_batch_size); - Python接口:
onnx_builder.set_opt_batch_size(opt_batch_size)
ONNX模型要求
- 导出ONNX模型时需要指定动态维度:
dynamic_axes = {'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}} torch.onnx.export(..., dynamic_axes=dynamic_axes) - 仅支持batch_size作为动态维度
- batch_size必须是输入的第一个维度
C++接口使用
基本使用流程
// 1. 创建Builder
fwd::OnnxBuilder builder;
builder.SetInferMode("float32"); // 设置推理精度
// 2. 构建Engine
auto engine = builder.Build("model.onnx");
// 3. 准备输入数据
std::vector<float> input_data(1*3*224*224, 0);
fwd::Tensor input = {input_data.data(), {1,3,224,224}, fwd::DataType::FLOAT, fwd::DeviceType::CPU};
// 4. 执行推理
std::vector<fwd::Tensor> outputs;
engine->Forward({input}, outputs);
// 5. 处理输出
for(auto& out : outputs) {
std::vector<float> host_data(out.dims[0]*out.dims[1]*out.dims[2]*out.dims[3]);
MemcpyDeviceToHost(host_data.data(), out.data, host_data.size());
}
INT8量化推理
// 1. 实现数据流接口
class MyBatchStream : public IBatchStream {
// 实现next、getBatch等方法
};
// 2. 创建量化器
auto stream = std::make_shared<MyBatchStream>();
auto calibrator = std::make_shared<TrtInt8Calibrator>(stream, "calib.cache", "entropy");
// 3. 构建INT8引擎
builder.SetCalibrator(calibrator);
builder.SetInferMode("int8");
auto engine = builder.Build("model.onnx");
BERT模型INT8量化
BERT模型量化需要分两步进行:
// 1. 生成校准文件
builder.SetInferMode("int8_calib");
auto calib_engine = builder.Build("bert.onnx");
// 2. 使用校准文件构建推理引擎
builder.SetInferMode("int8");
auto infer_engine = builder.Build("bert.onnx");
Python接口使用
基本使用示例
import forward
import numpy as np
# 1. 创建Builder
builder = forward.OnnxBuilder()
builder.set_mode("float32") # 设置推理精度
# 2. 构建Engine
engine = builder.build("model.onnx")
# 3. 执行推理
input_data = np.random.rand(1,3,224,224).astype(np.float32)
outputs = engine.forward([input_data])
INT8量化推理
class MyBatchStream(forward.IPyBatchStream):
# 实现数据流接口
pass
# 创建量化器
stream = MyBatchStream()
calibrator = forward.TrtInt8Calibrator(stream, "calib.cache", "minmax")
# 构建INT8引擎
builder.set_calibrator(calibrator)
builder.set_mode("int8")
engine = builder.build("model.onnx")
手动量化Scale设置
在某些场景下,我们可能需要手动设置各层的量化scale值:
-
准备scale文件,格式为:
LayerName: scale_value -
C++使用方式:
auto calibrator = std::make_shared<TrtInt8Calibrator>("cache.calib", "entropy", 1); calibrator->setScaleFile("scales.txt"); -
Python使用方式:
calibrator = forward.TrtInt8Calibrator("cache.calib", "entropy", 1) calibrator.set_scale_file("scales.txt")
最佳实践建议
-
模型导出:
- 导出ONNX模型时建议同时导出JIT模型用于精度验证
- 确保输入输出名称设置正确
-
量化校准:
- 校准数据集应具有代表性
- BERT模型建议使用minmax校准方法
- 普通CNN模型可以使用entropy校准方法
-
性能优化:
- 合理设置opt_batch_size以获得最佳性能
- FP16模式通常能在保持精度的同时提升性能
- INT8模式可显著提升性能但可能影响精度
-
错误排查:
- 检查TensorRT版本是否匹配
- 确保CUDA环境配置正确
- 验证模型输入输出是否符合预期
通过本文介绍,您应该已经掌握了使用Forward框架进行ONNX模型推理的完整流程。根据实际应用场景选择合适的精度模式和配置,可以获得最佳的推理性能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492