lm-evaluation-harness项目中MBPP任务pass@k指标实现问题分析
2025-05-26 03:09:06作者:曹令琨Iris
在EleutherAI的lm-evaluation-harness项目中,MBPP(Microsoft Big Programming Problems)和MBPP+这两个代码生成评估任务目前存在pass@k指标实现的问题。本文将深入分析该问题的技术背景、原因及解决方案。
问题背景
MBPP是一个流行的代码生成基准测试,用于评估模型生成Python函数的能力。与HumanEval类似,它需要计算pass@k指标来衡量模型生成正确代码的概率。然而在lm-evaluation-harness项目中,MBPP任务目前仅支持pass@1指标,且当尝试扩展为pass@k(k=5,10等)时会出现准确率归零的问题。
技术分析
问题的核心在于MBPP任务的数据处理流程存在两个关键点:
-
过滤器配置问题:默认情况下,lm-evaluation-harness会使用take_first过滤器,该过滤器只保留每个问题的第一个生成结果。这显然不适合pass@k指标的计算,因为我们需要保留多个生成样本。
-
代码执行方式差异:与HumanEval不同,MBPP要求模型从头开始生成完整的函数,而不是完成部分函数。因此在代码执行评估阶段需要特殊处理:
- HumanEval需要将生成内容与提示拼接后执行
- MBPP则直接执行生成的完整函数
解决方案
要实现MBPP任务的pass@k指标,需要进行以下修改:
- 修改过滤器:将默认的take_first过滤器替换为passthrough过滤器,确保保留所有生成样本:
def build_predictions(resps: list[list[str]], docs: list[dict]) -> list[list[str]]:
return resps
- 调整评估逻辑:确保code_eval正确执行MBPP生成的完整函数,而不是像HumanEval那样拼接部分代码。
实现建议
在实际应用中,开发者需要注意:
- MBPP和HumanEval虽然都是代码生成任务,但在评估实现上有重要区别
- 多生成样本评估需要确保所有样本都被保留并正确传递给评估器
- 代码执行环境需要正确处理不同任务的生成格式差异
该问题的解决方案已经过验证,可以稳定支持MBPP和MBPP+任务的pass@k指标计算。未来可以考虑将该修复合并到主分支,为社区提供更全面的评估能力。
对于代码生成评估任务的研究者,理解这些底层实现细节对于正确解读评估结果至关重要,特别是在比较不同模型或不同基准测试的性能时。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1