lm-evaluation-harness项目中MBPP任务pass@k指标实现问题分析
2025-05-26 08:05:19作者:曹令琨Iris
在EleutherAI的lm-evaluation-harness项目中,MBPP(Microsoft Big Programming Problems)和MBPP+这两个代码生成评估任务目前存在pass@k指标实现的问题。本文将深入分析该问题的技术背景、原因及解决方案。
问题背景
MBPP是一个流行的代码生成基准测试,用于评估模型生成Python函数的能力。与HumanEval类似,它需要计算pass@k指标来衡量模型生成正确代码的概率。然而在lm-evaluation-harness项目中,MBPP任务目前仅支持pass@1指标,且当尝试扩展为pass@k(k=5,10等)时会出现准确率归零的问题。
技术分析
问题的核心在于MBPP任务的数据处理流程存在两个关键点:
-
过滤器配置问题:默认情况下,lm-evaluation-harness会使用take_first过滤器,该过滤器只保留每个问题的第一个生成结果。这显然不适合pass@k指标的计算,因为我们需要保留多个生成样本。
-
代码执行方式差异:与HumanEval不同,MBPP要求模型从头开始生成完整的函数,而不是完成部分函数。因此在代码执行评估阶段需要特殊处理:
- HumanEval需要将生成内容与提示拼接后执行
- MBPP则直接执行生成的完整函数
解决方案
要实现MBPP任务的pass@k指标,需要进行以下修改:
- 修改过滤器:将默认的take_first过滤器替换为passthrough过滤器,确保保留所有生成样本:
def build_predictions(resps: list[list[str]], docs: list[dict]) -> list[list[str]]:
return resps
- 调整评估逻辑:确保code_eval正确执行MBPP生成的完整函数,而不是像HumanEval那样拼接部分代码。
实现建议
在实际应用中,开发者需要注意:
- MBPP和HumanEval虽然都是代码生成任务,但在评估实现上有重要区别
- 多生成样本评估需要确保所有样本都被保留并正确传递给评估器
- 代码执行环境需要正确处理不同任务的生成格式差异
该问题的解决方案已经过验证,可以稳定支持MBPP和MBPP+任务的pass@k指标计算。未来可以考虑将该修复合并到主分支,为社区提供更全面的评估能力。
对于代码生成评估任务的研究者,理解这些底层实现细节对于正确解读评估结果至关重要,特别是在比较不同模型或不同基准测试的性能时。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218