在lm-evaluation-harness项目中创建自定义评估数据集指南
2025-05-26 23:24:01作者:郜逊炳
在机器学习模型评估过程中,使用自定义数据集对模型性能进行全面测试是至关重要的。本文将详细介绍如何在EleutherAI的lm-evaluation-harness项目中创建和使用自定义评估数据集。
数据集格式要求
要创建适用于lm-evaluation-harness的自定义评估数据集,核心要求是将数据转换为Hugging Face数据集格式。这种格式具有以下特点:
- 数据集必须能够通过Hugging Face的
datasets
库直接加载 - 数据应组织为表格形式,包含明确的列结构
- 每列数据代表特定的评估维度或输入输出字段
创建步骤详解
1. 准备原始数据
首先需要将您的评估数据整理为结构化格式。常见的原始数据形式包括:
- JSON格式文件
- CSV表格数据
- 文本文件
- 数据库导出数据
2. 转换为Hugging Face数据集
使用Hugging Face的datasets
库将原始数据转换为标准格式:
from datasets import Dataset
# 假设您的数据是Python字典列表
data = [
{"input": "问题1", "target": "答案1"},
{"input": "问题2", "target": "答案2"}
]
# 创建数据集
custom_dataset = Dataset.from_dict({
"input": [item["input"] for item in data],
"target": [item["target"] for item in data]
})
3. 定义评估任务
在lm-evaluation-harness中,您需要创建一个任务定义文件来指定如何使用您的数据集:
from lm_eval.base import Task
class MyCustomTask(Task):
VERSION = 0
DATASET_PATH = "path/to/your/dataset"
def has_training_docs(self):
return False
def has_validation_docs(self):
return False
def has_test_docs(self):
return True
def test_docs(self):
return self.dataset["test"]
def doc_to_text(self, doc):
return doc["input"]
def doc_to_target(self, doc):
return doc["target"]
def process_results(self, doc, results):
# 定义评估逻辑
pass
最佳实践建议
- 数据预处理:确保数据集中的文本已经过适当清洗和标准化
- 评估指标:明确定义评估指标,如准确率、BLEU分数等
- 数据集拆分:建议将数据分为训练集、验证集和测试集
- 文档记录:详细记录数据集的来源、构建方法和评估标准
常见问题解决方案
- 格式转换问题:如果遇到格式转换困难,可以先
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3