使用Jib Maven插件构建Spring Boot Fat Jar容器镜像的最佳实践
2025-05-15 02:48:05作者:范垣楠Rhoda
背景介绍
在Java应用容器化过程中,GoogleContainerTools的Jib工具因其无需Docker守护进程、构建速度快等优势而广受欢迎。对于使用Spring Boot框架开发的应用,特别是经过ProGuard混淆处理后生成Fat Jar的情况,如何通过Jib Maven插件实现与jib-cli相同的容器化效果,是一个值得探讨的技术话题。
核心挑战
Spring Boot应用通常打包为包含所有依赖的Fat Jar,而Jib默认会尝试解构应用,将依赖项、资源文件和类文件分别放入不同的镜像层。这种默认行为与直接使用jib-cli处理Fat Jar的方式存在差异,可能导致容器运行时出现问题。
解决方案
1. 添加Jib层过滤扩展
首先需要在Jib Maven插件配置中添加jib-layer-filter-extension-maven依赖,这个扩展允许我们精细控制镜像中各层的内容:
<dependencies>
<dependency>
<groupId>com.google.cloud.tools</groupId>
<artifactId>jib-layer-filter-extension-maven</artifactId>
<version>0.3.0</version>
</dependency>
</dependencies>
2. 配置额外目录
将构建生成的Fat Jar显式包含到镜像中,指定存放路径为/app/classpath:
<extraDirectories>
<paths>
<path>
<from>target</from>
<into>/app/classpath</into>
<includes>*.jar</includes>
</path>
</paths>
</extraDirectories>
3. 应用层过滤规则
通过插件扩展配置,移除Jib默认生成的原始Jar文件和应用依赖库,因为这些内容已经包含在Fat Jar中:
<pluginExtensions>
<pluginExtension>
<implementation>com.google.cloud.tools.jib.maven.extension.layerfilter.JibLayerFilterExtension</implementation>
<configuration implementation="com.google.cloud.tools.jib.maven.extension.layerfilter.Configuration">
<filters>
<filter>
<glob>/app/classpath/*.original.jar</glob>
</filter>
<filter>
<glob>/app/libs/*.jar</glob>
</filter>
</filters>
</configuration>
</pluginExtension>
</pluginExtensions>
4. 正确配置启动命令
根据Spring Boot版本设置正确的JarLauncher入口点。对于Spring Boot 3.2及以上版本,需要使用新的启动器类:
<entrypoint>java,-cp,@/app/jib-classpath-file,org.springframework.boot.loader.JarLauncher</entrypoint>
实现效果
通过以上配置,最终生成的容器镜像将包含:
- Spring Boot Fat Jar存放在/app/classpath目录下
- 精简的镜像层结构,避免重复依赖
- 正确的启动命令,确保应用能够正常启动
注意事项
- 对于不同版本的Spring Boot,JarLauncher的类路径可能不同,需要根据实际情况调整
- 如果应用使用了ProGuard等混淆工具,确保混淆配置不会影响Spring Boot的启动类
- 镜像中的资源路径需要与应用的配置保持一致
总结
通过合理配置Jib Maven插件及其扩展,开发者可以灵活地控制容器镜像的构建过程,实现与jib-cli相同的效果。这种方法特别适合需要保持Fat Jar结构的Spring Boot应用容器化场景,同时也为应用混淆等高级需求提供了解决方案。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0109AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
216
2.22 K

暂无简介
Dart
520
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
981
580

Ascend Extension for PyTorch
Python
65
96

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
557
86

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399