Determined AI 集群资源分配优化:避免GPU碎片化问题解析
2025-06-26 21:58:07作者:邬祺芯Juliet
概述
在大规模深度学习训练场景中,GPU资源的有效利用至关重要。本文针对Determined AI平台上的GPU资源碎片化问题,深入分析其成因并提供多种解决方案,帮助用户优化集群资源分配。
问题背景
当用户需要同时运行多个单GPU任务时,如果这些任务被随机分配到不同的计算节点,会导致GPU资源碎片化。例如,8个1-GPU任务分散在8个节点上,每个节点都有7个GPU闲置,而无法用于需要多GPU的大任务。
解决方案详解
1. Agent资源管理器方案
对于使用Agent资源管理器的Determined集群,可以通过以下两种方式优化:
资源池隔离方案
- 为每个计算节点创建独立的资源池
- 提交任务时指定目标资源池
- 优点:实现简单,控制精确
- 缺点:需要预先配置,灵活性较低
最佳适配算法
- Determined默认使用
best适配算法 - 该算法会自动将任务打包到最少量的节点上
- 配置位置:master配置文件中的
fitting_method参数 - 优点:无需额外配置,系统自动优化
2. Kubernetes集群方案
对于基于Kubernetes的Determined部署,可采用以下高级调度策略:
Pod亲和性配置
- 通过
podAffinity规则确保相关任务调度到同一节点 - 可配置强制性(
required)或优先性(preferred)规则 - 示例场景:让同一实验的多个worker部署在同一节点
集群策略引擎
- 使用Kyverno等策略引擎自动注入调度规则
- 可定义全局策略自动为所有Pod添加亲和性规则
- 优点:集中管理,无需修改单个任务配置
实施建议
- 评估集群规模:小规模集群适合资源池方案,大规模集群更适合自动调度策略
- 监控资源利用率:定期检查GPU使用率指标,评估优化效果
- 混合策略:可结合多种方案,如基础资源池+高级调度策略
- 测试验证:在生产环境实施前,建议在测试环境验证调度效果
进阶思考
对于更复杂的场景,可考虑:
- 动态资源池:根据负载自动调整资源池配置
- 智能装箱算法:考虑任务类型、运行时长等因素的优化调度
- 预留系统:为特定任务保留完整节点资源
通过合理配置Determined AI的资源调度策略,可以显著提高GPU利用率,降低运营成本,同时保证各类深度学习任务的顺利执行。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
246
2.42 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
88
React Native鸿蒙化仓库
JavaScript
216
293
仓颉编程语言测试用例。
Cangjie
34
78
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
353
1.68 K
暂无简介
Dart
542
118
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
592
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
406
Ascend Extension for PyTorch
Python
82
116