Semantic Graph Convolutional Networks for 3D Human Pose Regression 开源项目教程
2025-05-20 10:03:53作者:蔡丛锟
1. 项目介绍
本项目是基于论文“Semantic Graph Convolutional Networks for 3D Human Pose Regression”的PyTorch实现。该论文提出了一种新型的图卷积网络架构,适用于具有图结构数据的回归任务。本项目专注于使用图卷积网络进行3D人体姿态估计,并在Human3.6M数据集上展示了优异的性能。
2. 项目快速启动
环境准备
- Python 2.7
- PyTorch 1.1.0
- Ubuntu 16.04
- NVIDIA GPU
首先,确保安装了上述环境。推荐使用Anaconda安装Python 2.7,并按照官方指南安装PyTorch。
克隆项目
git clone git@github.com:garyzhao/SemGCN.git
cd SemGCN
安装依赖
pip install -r requirements.txt
数据集设置
详细的数据集设置说明可以在项目中的data/README.md文件中找到。数据准备代码来自于VideoPose3D项目。
预训练模型评估
预训练模型可以从Google Drive下载,并放置在项目根目录下的checkpoint文件夹中。
评估Martinez等人的模型:
python main_linear.py --evaluate checkpoint/pretrained/ckpt_linear.pth.tar
评估不带非局部块的SemGCN模型:
python main_gcn.py --evaluate checkpoint/pretrained/ckpt_semgcn.pth.tar
评估带非局部块的SemGCN模型:
python main_gcn.py --non_local --evaluate checkpoint/pretrained/ckpt_semgcn_nonlocal.pth.tar
从零开始训练
如果想要重现预训练模型的结果,可以运行以下命令。
对于Martinez等人的模型:
python main_linear.py
对于不带非局部块的SemGCN模型:
python main_gcn.py --epochs 50
对于带非局部块的SemGCN模型:
python main_gcn.py --non_local --epochs 30
3. 应用案例和最佳实践
可视化模型预测
可以通过以下命令生成模型预测的可视化结果:
python viz.py --architecture gcn --non_local --evaluate checkpoint/pretrained/ckpt_semgcn_nonlocal.pth.tar --viz_subject S11 --viz_action Walking --viz_camera 0 --viz_output output.gif --viz_size 3 --viz_downsample 2 --viz_limit 60
训练和评估最佳实践
- 使用地面真实2D检测结果进行训练和评估。
- 根据需要调整网络设置,如
num_layers和hid_dim。 - 使用预训练模型作为起点,进行微调以满足特定需求。
4. 典型生态项目
- 3d-pose-baseline
- 3d_pose_baseline_pytorch
- VideoPose3D
以上项目为相关领域的其他开源项目,可以为研究者和开发者提供额外的资源和参考。在开展类似研究时,可以考虑借鉴这些项目的实现和最佳实践。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881