dotnet/extensions项目中AI评估器的结构化输出实践探索
在dotnet/extensions项目的AI评估模块开发过程中,团队针对评估器组件的输出格式进行了深入的技术探索。本文将从技术实现角度剖析如何利用结构化输出来提升AI评估效果,并分享实践中的经验总结。
背景与挑战
项目中的AI评估器(如RelevanceTruthAndCompletenessEvaluator、FluencyEvaluator等)需要处理大语言模型(LLM)的评估结果输出。传统实现中存在两个典型场景:
- 要求返回JSON格式的复合评估结果
- 仅需返回单个整数值的简化评估结果
这两种输出模式在实现上存在技术差异,特别是在与MEAI(Microsoft Extensions AI)的结构化输出功能集成时,暴露出一些需要解决的技术问题。
技术实现方案
JSON格式输出的优化
对于已经采用JSON格式的评估器(如RelevanceTruthAndCompletenessEvaluator),团队成功应用了IChatClient.GetResponseAsync方法。这种方法通过以下机制强化了输出结构:
- 对于原生支持JSON Schema的LLM,通过ChatOptions.ResponseFormat直接传递schema
- 对于其他LLM,在聊天历史中添加包含schema说明的系统消息
这种实现既保持了向后兼容性,又通过结构化输出约束提高了结果可靠性。典型实现模式如下:
var result = await chatClient.GetResponseAsync<EvaluationResult>(...);
单值输出的技术考量
对于仅需返回单个整数的评估场景(如SingleNumericMetricEvaluator),团队发现直接使用GetResponseAsync会遇到技术限制。核心问题在于:
- 当前JSON Schema实现要求顶层必须是对象类型
- 简单类型输出会与系统提示中的格式要求产生冲突
经过技术评估,团队决定暂时保持原有实现方式,主要基于以下考虑:
- 单值输出具有更高的token效率
- 在某些模型上可能具有更好的稳定性
- 等待底层框架对简单类型支持的完善
技术深度解析
结构化输出的实现机制
MEAI的结构化输出功能采用了智能适配策略:
- 优先尝试使用平台原生JSON Schema支持
- 回退到提示工程方案,通过系统消息约束输出格式
这种分层设计保证了功能在不同AI服务提供商间的可移植性,但实际效果会因模型能力差异而有所不同。
性能与可靠性权衡
在技术选型过程中,团队特别关注了以下指标:
- 输出一致性:结构化输出能显著降低格式错误
- Token消耗:简单类型输出具有明显优势
- 模型兼容性:不同LLM对结构化提示的响应存在差异
未来演进方向
根据技术讨论,未来可能的技术演进包括:
- 增加对简单类型输出的原生支持
- 提供输出格式的灵活配置选项
- 增强跨模型的结构化输出兼容性测试
实践建议
基于项目经验,我们建议开发者在实现AI评估器时:
- 优先考虑使用结构化输出提升可靠性
- 对于简单评分场景,可权衡使用轻量级输出格式
- 保持对底层AI服务能力的适配性
通过这次技术实践,dotnet/extensions项目为AI评估场景提供了更健壮的实现方案,同时也为社区贡献了有价值的实践经验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00