dotnet/extensions项目中AI评估器的结构化输出实践探索
在dotnet/extensions项目的AI评估模块开发过程中,团队针对评估器组件的输出格式进行了深入的技术探索。本文将从技术实现角度剖析如何利用结构化输出来提升AI评估效果,并分享实践中的经验总结。
背景与挑战
项目中的AI评估器(如RelevanceTruthAndCompletenessEvaluator、FluencyEvaluator等)需要处理大语言模型(LLM)的评估结果输出。传统实现中存在两个典型场景:
- 要求返回JSON格式的复合评估结果
- 仅需返回单个整数值的简化评估结果
这两种输出模式在实现上存在技术差异,特别是在与MEAI(Microsoft Extensions AI)的结构化输出功能集成时,暴露出一些需要解决的技术问题。
技术实现方案
JSON格式输出的优化
对于已经采用JSON格式的评估器(如RelevanceTruthAndCompletenessEvaluator),团队成功应用了IChatClient.GetResponseAsync方法。这种方法通过以下机制强化了输出结构:
- 对于原生支持JSON Schema的LLM,通过ChatOptions.ResponseFormat直接传递schema
- 对于其他LLM,在聊天历史中添加包含schema说明的系统消息
这种实现既保持了向后兼容性,又通过结构化输出约束提高了结果可靠性。典型实现模式如下:
var result = await chatClient.GetResponseAsync<EvaluationResult>(...);
单值输出的技术考量
对于仅需返回单个整数的评估场景(如SingleNumericMetricEvaluator),团队发现直接使用GetResponseAsync会遇到技术限制。核心问题在于:
- 当前JSON Schema实现要求顶层必须是对象类型
- 简单类型输出会与系统提示中的格式要求产生冲突
经过技术评估,团队决定暂时保持原有实现方式,主要基于以下考虑:
- 单值输出具有更高的token效率
- 在某些模型上可能具有更好的稳定性
- 等待底层框架对简单类型支持的完善
技术深度解析
结构化输出的实现机制
MEAI的结构化输出功能采用了智能适配策略:
- 优先尝试使用平台原生JSON Schema支持
- 回退到提示工程方案,通过系统消息约束输出格式
这种分层设计保证了功能在不同AI服务提供商间的可移植性,但实际效果会因模型能力差异而有所不同。
性能与可靠性权衡
在技术选型过程中,团队特别关注了以下指标:
- 输出一致性:结构化输出能显著降低格式错误
- Token消耗:简单类型输出具有明显优势
- 模型兼容性:不同LLM对结构化提示的响应存在差异
未来演进方向
根据技术讨论,未来可能的技术演进包括:
- 增加对简单类型输出的原生支持
- 提供输出格式的灵活配置选项
- 增强跨模型的结构化输出兼容性测试
实践建议
基于项目经验,我们建议开发者在实现AI评估器时:
- 优先考虑使用结构化输出提升可靠性
- 对于简单评分场景,可权衡使用轻量级输出格式
- 保持对底层AI服务能力的适配性
通过这次技术实践,dotnet/extensions项目为AI评估场景提供了更健壮的实现方案,同时也为社区贡献了有价值的实践经验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00