LLaMA-Factory项目中大模型训练时的检查点保存问题分析
2025-05-01 09:57:24作者:蔡怀权
在LLaMA-Factory项目中进行Qwen2.5-VL-32B大模型全参数微调训练时,遇到了检查点保存失败的问题。经过排查发现,这是由于内存不足导致的常见问题。
问题背景
当使用8块NVIDIA H20 GPU(总显存95GB)进行Qwen2.5-VL-32B大模型的全参数微调训练时,系统配置了DeepSpeed Z3优化策略。训练过程中虽然能够正常进行前向传播和反向传播,但在尝试保存检查点时却意外失败。
关键配置分析
训练配置中几个关键参数值得关注:
- 使用了全参数微调(full finetuning)而非参数高效微调
 - 冻结了视觉塔(freeze_vision_tower)和多模态投影器(freeze_multi_modal_projector)
 - 批处理大小为1,梯度累积步数为2
 - 启用了BF16混合精度训练和Flash Attention优化
 
问题根源
经过深入分析,发现检查点保存失败的主要原因是内存不足。当尝试保存32B参数规模的模型检查点时,系统需要临时分配大量内存来序列化和存储模型状态、优化器状态和训练元数据。在现有硬件配置下,这部分内存需求超过了可用资源。
解决方案与建议
对于大模型训练中的检查点保存问题,可以考虑以下几种解决方案:
- 调整保存策略:增加save_steps间隔,减少保存频率
 - 优化检查点内容:启用save_only_model选项,仅保存模型参数
 - 内存管理:在保存检查点前手动清理缓存,预留足够内存
 - 分布式保存:利用DeepSpeed的分片检查点功能
 - 硬件升级:增加系统内存或使用更高性能的存储设备
 
经验总结
大模型训练中的资源管理需要特别注意以下几点:
- 检查点保存的内存需求往往被低估
 - 全参数微调相比参数高效方法需要更多资源
 - 模型规模与硬件配置需要合理匹配
 - 监控系统资源使用情况有助于提前发现问题
 
通过这次问题排查,我们更加认识到在大模型训练过程中,不仅需要考虑训练阶段的计算资源,还需要为模型保存和检查点创建预留足够的系统资源。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444