LLaMA-Factory项目中训练GLM-4-9B-0414模型时的梯度检查点问题分析
在LLaMA-Factory项目中使用GLM-4-9B-0414模型进行全参数微调训练时,开发者可能会遇到一个与梯度检查点相关的错误。这个问题主要出现在使用DeepSpeed进行分布式训练的场景下,错误信息表明在尝试访问梯度检查点函数的__self__
属性时失败。
问题现象
当开发者尝试使用LLaMA-Factory框架训练GLM-4-9B-0414模型时,训练过程会在初始化阶段抛出AttributeError
异常,提示'functools.partial' object has no attribute '__self__'
。这个错误发生在梯度检查点功能的实现部分,具体是在custom_gradient_checkpointing_func
函数中尝试访问函数对象的__self__
属性时。
技术背景
梯度检查点(Gradient Checkpointing)是一种用于减少深度学习模型训练时显存占用的技术。它通过在前向传播过程中不保存所有中间激活值,而是在反向传播时重新计算部分激活值,从而以计算时间为代价换取显存空间的节省。
在PyTorch中,梯度检查点通常通过torch.utils.checkpoint.checkpoint
函数实现。LLaMA-Factory项目为了支持更灵活的配置,实现了自定义的梯度检查点功能。
问题原因分析
这个问题的根本原因在于DeepSpeed框架对模型前向传播函数的封装方式。DeepSpeed在封装模型时使用了functools.partial
来创建部分应用函数,这导致原本期望的函数对象变成了一个部分应用函数对象,而部分应用函数没有__self__
属性。
具体来说:
- 原始代码假设传入的函数是一个绑定方法(bound method),具有
__self__
属性指向所属的模块实例 - 但DeepSpeed的封装使得传入的函数变成了
functools.partial
对象 - 当代码尝试访问
__self__
属性时,由于部分应用函数没有这个属性而抛出异常
解决方案
这个问题已经在LLaMA-Factory的最新代码中得到修复。开发者可以通过以下方式解决:
- 更新LLaMA-Factory到最新版本
- 如果无法立即更新,可以临时修改
checkpointing.py
文件中的相关代码,使用更健壮的方式来获取模块实例
修复后的代码应该能够正确处理DeepSpeed封装后的函数对象,确保梯度检查点功能正常工作。
最佳实践建议
在使用LLaMA-Factory训练大型语言模型时,建议:
- 保持框架和依赖库的最新版本
- 在使用DeepSpeed等分布式训练框架时,注意检查梯度检查点功能的兼容性
- 对于GLM系列模型,确保使用适配的transformers版本(如4.51.3)
- 在遇到类似问题时,检查错误堆栈中涉及的框架封装层次
这个问题展示了深度学习框架在多层封装时可能出现的兼容性问题,也提醒开发者在实现高级功能时需要考虑到框架可能对基础对象进行的修改。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









