TFClassify-Unity-Barracuda 使用教程
2024-08-27 10:24:59作者:史锋燃Gardner
项目介绍
TFClassify-Unity-Barracuda 是一个开源项目,展示了如何在 Unity 应用程序中使用 TensorFlow 或 ONNX 模型进行图像分类和对象检测。该项目利用 Unity Barracuda 推理引擎,Barracuda 是一个仍在开发中的预览版本,因此可能会频繁更新。
项目快速启动
环境准备
- Unity 版本: 需要 Unity 2019.3 或更高版本。注意,2019.2.x 版本似乎存在 WebCamTexture 和 Vulkan 的内存泄漏问题。
- Barracuda 插件: 从
Window -> Package Manager
安装 Barracuda 0.4.0-preview 插件。注意,示例项目在 0.5.0-preview 版本上可能无法正常工作。 - 图形 API 设置: 在
Edit -> Player Settings -> Other Settings
中,确保选择了适用于 Android 的 Vulkan 或适用于 iOS 的 Metal。如果需要,可以移除 Auto Graphics API 选项。
项目设置
- 克隆项目:
git clone https://github.com/Syn-McJ/TFClassify-Unity-Barracuda.git
- 打开项目: 在 Unity 中打开项目。
- 加载场景: 打开
Assets
文件夹中的Classify
或Detect
场景。 - 设置模型和标签文件: 确保
Classifier
或Detector
对象已设置模型文件和标签文件。 - 构建和运行: 在
File -> Build Settings
中选择一个场景并点击Build and Run
。对于 iOS,可能需要在 Xcode 中修复团队设置和相机权限请求消息。
应用案例和最佳实践
图像分类
图像分类是计算机视觉中的一个基本任务,该项目展示了如何使用预训练的 TensorFlow 或 ONNX 模型在 Unity 中进行图像分类。通过加载模型和标签文件,可以对输入图像进行分类,并输出分类结果。
对象检测
对象检测是另一个重要的计算机视觉任务,该项目展示了如何使用预训练的模型在 Unity 中进行对象检测。通过加载模型和标签文件,可以检测图像中的对象,并输出检测结果。
最佳实践
- 模型选择: 选择适合任务的预训练模型,确保模型与 Barracuda 兼容。
- 性能优化: 在移动设备上运行时,注意优化模型和应用程序的性能。
- 错误处理: 处理可能的错误和异常情况,确保应用程序的稳定性。
典型生态项目
Unity Barracuda
Unity Barracuda 是 Unity 官方推出的轻量级跨平台神经网络推理库,支持多种神经网络架构。它可以在多个平台上运行,包括移动设备、桌面和 WebGL。
TensorFlow
TensorFlow 是一个广泛使用的开源机器学习框架,提供了丰富的工具和库,用于构建和训练各种机器学习模型。
ONNX
ONNX(Open Neural Network Exchange)是一个开放的格式,用于表示深度学习模型,使得模型可以在不同的框架之间进行转换和使用。
通过结合这些生态项目,TFClassify-Unity-Barracuda 展示了如何在 Unity 中集成和使用这些强大的工具和库,以实现高效的图像分类和对象检测。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1