ASP.NET Extensions中AI函数元数据与JSON Schema的性能优化实践
2025-06-28 10:44:00作者:龚格成
背景介绍
在ASP.NET Extensions项目中,Microsoft.Extensions.AI组件为开发者提供了构建AI应用的基础设施。其中AIFunctionMetadata类作为AI函数调用的核心元数据容器,其设计直接影响到函数调用的性能和开发体验。
核心问题分析
在实现AI函数调用时,开发者需要为每个函数提供详细的元数据描述,包括函数名称、描述、参数定义和返回类型等信息。这些元数据通常需要符合主流AI服务的规范,特别是参数部分需要提供JSON Schema定义。
原始实现存在几个关键痛点:
- 参数Schema定义分散在各个AIFunctionParameterMetadata实例中,难以统一管理
- 无法直接设置整个函数的完整JSON Schema,导致运行时需要多次序列化
- 参数是否必填(required)的配置与参数定义分离,不符合JSON Schema规范
技术演进与优化
开发团队针对这些问题进行了深入优化,主要改进包括:
1. 采用JsonElement作为Schema载体
新版本选择JsonElement作为JSON Schema的表示形式,相比原始字符串方案具有多重优势:
- 内存效率:直接基于UTF-8编码,避免UTF-16到UTF-8的转换开销
- 验证保证:构造时即确保是合法的JSON文档
- 序列化友好:可自然嵌套到父级JSON结构中
- 性能优势:基准测试显示JsonElement到UTF-8的转换比字符串快约50%
2. 完整Schema支持
现在开发者可以:
- 直接提供完整的函数Schema定义
- 避免运行时拼接各个参数Schema的开销
- 更符合主流AI服务的接口规范
3. 代码生成优化方案
对于追求极致性能的场景,可以采用代码生成方案:
- 为每个AI函数生成专用的参数DTO类
- 预生成Schema定义字符串
- 实现高效的序列化/反序列化路径
这种方案完全避免了运行时反射,适合AOT编译场景。例如对于天气查询函数:
// 生成的参数类
public class GetCurrentWeatherParameters {
public string location { get; set; }
public string unit { get; set; }
}
// 生成的调用代码
var params = JsonSerializer.Deserialize<GetCurrentWeatherParameters>(input);
var result = await GetCurrentWeather(params.location, params.unit);
return JsonSerializer.Serialize(result);
最佳实践建议
- 性能敏感场景:预生成完整Schema并使用JsonElement存储
- 开发便捷性:利用元数据API逐步构建函数定义
- AOT兼容:考虑采用代码生成方案替代反射
- 类型安全:为每个函数定义强类型参数类
未来展望
随着AI应用开发的普及,ASP.NET Extensions中的AI支持将持续演进。开发者可以期待:
- 更完善的Schema验证支持
- 与Source Generator深度集成
- 针对不同AI服务的适配层优化
- 更丰富的性能调优选项
通过本次优化,ASP.NET为AI应用开发提供了更高效、更灵活的基础设施,使开发者能够在保证性能的同时,更专注于业务逻辑的实现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1