首页
/ 深入解析GLM-4模型中的工具调用机制

深入解析GLM-4模型中的工具调用机制

2025-06-03 01:26:28作者:蔡怀权

工具调用功能概述

GLM-4作为THUDM团队开发的最新大语言模型,在工具调用功能上相比前代GLM-3有了显著改进。工具调用功能允许模型在对话过程中识别需要外部工具辅助的场景,并生成相应的工具调用请求,这一功能极大地扩展了模型的实际应用能力。

GLM-4工具调用的实现方式

GLM-4的工具调用主要通过两种方式实现:

  1. OpenAI API兼容模式:这是官方推荐的使用方式。通过运行项目中的openai_api_server.py脚本,可以启动一个兼容OpenAI API规范的服务器。这种方式下,工具调用的处理流程与OpenAI API保持一致,开发者可以轻松地将现有基于OpenAI API的应用迁移到GLM-4上。

  2. 原生解析模式:虽然官方文档没有明确说明,但从代码中可以发现,开发者仍然可以直接解析模型返回的工具调用消息。这种方式需要开发者自行处理工具调用的请求和响应,适合需要深度定制工具调用流程的场景。

工具调用的技术实现细节

在openai_api_server.py中,GLM-4团队实现了完整的工具调用处理逻辑。主要包括以下几个关键部分:

  1. 工具调用请求解析:模型在需要工具辅助时会返回特定格式的消息,包含工具名称、参数等信息。

  2. 工具执行:服务器接收到工具调用请求后,会根据配置的工具列表找到对应的工具并执行。

  3. 结果整合:工具执行完成后,服务器会将结果返回给模型,由模型继续生成后续回复。

使用建议

对于大多数开发者,建议优先使用OpenAI API兼容模式,这种方式具有以下优势:

  • 标准化接口,易于集成
  • 官方维护,稳定性有保障
  • 社区支持丰富,问题解决快

对于有特殊需求的开发者,可以研究openai_api_server.py中的实现逻辑,自行开发定制化的工具调用处理流程。这种方式虽然灵活性更高,但需要开发者投入更多精力处理各种边界情况。

常见问题解答

  1. GLM-3的工具调用代码能否直接用于GLM-4? 不能直接使用,因为GLM-4在工具调用的实现上做了优化和改进,接口和内部处理逻辑都有所变化。

  2. 是否必须使用OpenAI API兼容模式? 不是必须的,但这是官方推荐的方式。开发者也可以选择自行解析工具调用消息。

  3. 工具调用性能如何? GLM-4在工具调用方面的性能相比GLM-3有显著提升,特别是在复杂场景下的工具选择准确性和参数提取精度上。

总结

GLM-4的工具调用功能为开发者提供了强大的外部能力集成方案。无论是通过标准化的OpenAI API兼容模式,还是通过自行解析的原生方式,开发者都可以灵活地将各种外部工具集成到GLM-4的应用中。随着项目的持续发展,预计工具调用功能将会变得更加完善和易用。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8