GLM-4项目微调时Transformers版本兼容性问题解析
2025-06-03 10:45:02作者:幸俭卉
问题背景
在GLM-4项目进行模型微调时,用户遇到了Transformers版本兼容性问题。具体表现为在使用最新版Transformers(4.46.0)时,微调脚本无法正常运行,出现参数不匹配和初始化错误。
核心问题分析
1. 训练步骤参数不匹配
当使用Transformers 4.46.0版本时,系统报告Seq2SeqTrainer.training_step()方法接收了4个参数,但实际只定义了3个参数。这是由于新版本Transformers对训练流程进行了调整,导致接口不兼容。
2. 模型初始化参数错误
尝试使用最新版模型权重时,系统提示empty_init参数不被接受。这表明GLM-4的模型实现尚未适配Transformers最新版本的初始化机制。
解决方案
推荐方案:版本降级
经过验证,最稳定的解决方案是将Transformers版本控制在特定范围内:
- 最低版本要求:4.44.0
- 最高版本限制:4.45.0
这个版本区间既包含了必要的功能更新,又避免了与GLM-4实现的不兼容问题。
替代方案:代码修改
对于必须使用最新版Transformers的高级用户,可以手动修改以下内容:
- 调整
training_step方法签名,增加num_items_in_batch参数 - 移除模型初始化时的
empty_init参数 - 更新相关训练循环逻辑
但这种方法需要深入理解训练流程,且可能引入其他潜在问题,一般不建议普通用户采用。
最佳实践建议
- 环境隔离:为GLM-4项目创建专用虚拟环境,避免与其他项目的依赖冲突
- 版本锁定:在requirements.txt中明确指定Transformers版本范围
- 模型选择:根据Transformers版本选择合适的模型权重版本
- 更新关注:定期关注项目更新,及时获取兼容性修复
技术原理
GLM-4作为大型语言模型,其实现深度集成了Transformers库的核心功能。当Transformers进行重大版本更新时,可能会:
- 修改训练器接口规范
- 调整模型初始化流程
- 改变底层计算图构建方式
这些变化可能导致原有实现无法兼容,需要项目方进行适配更新。在适配完成前,使用已知兼容的版本是最稳妥的方案。
总结
GLM-4项目微调时的版本兼容性问题体现了深度学习生态中常见的依赖管理挑战。通过控制Transformers版本在4.44.0到4.45.0之间,用户可以稳定地进行模型微调工作。随着项目的持续发展,未来版本有望提供更广泛的兼容性支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
Ascend Extension for PyTorch
Python
221
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.86 K
React Native鸿蒙化仓库
JavaScript
260
322