FunASR项目Paraformer流式模型ONNX导出问题分析与修复
问题背景
在FunASR项目中,Paraformer流式语音识别模型(iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online)的ONNX导出功能存在一个关键bug。当用户尝试使用AutoModel接口导出ONNX格式模型时,系统会抛出类型错误:"TypeError: unsupported operand type(s) for +: 'method' and 'str'"。
问题根源分析
该问题的根本原因在于export_meta.py文件中存在两个主要问题:
-
函数重复定义:文件中重复定义了export_rebuild_model函数,导致实际执行时可能调用错误的版本。
-
属性设置不当:在模型导出过程中,export_name属性被错误地设置为方法(MethodType)而非字符串值。当后续代码尝试将export_name与".onnx"字符串拼接时,就会触发类型错误。
技术细节
在FunASR的模型导出流程中,系统会为编码器(encoder)和解码器(decoder)分别创建导出配置。正确的做法应该是:
- 为编码器模型设置export_name为"model"
- 为解码器模型设置export_name为"decoder"
然而在原始代码中,这些属性被错误地设置为方法对象,而非预期的字符串值。这导致在utils/export_utils.py中尝试拼接".onnx"后缀时出现类型不匹配错误。
解决方案
修复方案包含以下关键修改:
-
移除重复定义的export_rebuild_model函数,保留功能完整的版本。
-
显式设置encoder_model和decoder_model的export_name属性为字符串值:
encoder_model.export_name = 'model' decoder_model.export_name = 'decoder'
-
保持其他导出相关配置不变,包括输入输出名称、动态轴设置等。
影响范围
该修复影响所有使用Paraformer流式模型(iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online)进行ONNX导出的用户。修复后,用户可以正常执行以下导出代码:
from funasr import AutoModel
model = AutoModel(model="iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online")
res = model.export(type="onnx", quantize=True)
技术建议
对于深度学习模型导出ONNX格式时,开发者应当注意:
-
确保所有参与导出的属性类型正确,特别是需要字符串拼接的属性。
-
避免代码中的重复定义,这可能导致不可预期的行为。
-
对于复杂的模型结构(如编码器-解码器架构),需要分别处理各部分的导出配置。
-
在修改导出逻辑时,应当同时更新相关的文档和示例代码。
该修复已合并到FunASR主分支,用户更新到最新版本即可解决此问题。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









