FunASR项目Paraformer流式模型ONNX导出问题分析与修复
问题背景
在FunASR项目中,Paraformer流式语音识别模型(iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online)的ONNX导出功能存在一个关键bug。当用户尝试使用AutoModel接口导出ONNX格式模型时,系统会抛出类型错误:"TypeError: unsupported operand type(s) for +: 'method' and 'str'"。
问题根源分析
该问题的根本原因在于export_meta.py文件中存在两个主要问题:
-
函数重复定义:文件中重复定义了export_rebuild_model函数,导致实际执行时可能调用错误的版本。
-
属性设置不当:在模型导出过程中,export_name属性被错误地设置为方法(MethodType)而非字符串值。当后续代码尝试将export_name与".onnx"字符串拼接时,就会触发类型错误。
技术细节
在FunASR的模型导出流程中,系统会为编码器(encoder)和解码器(decoder)分别创建导出配置。正确的做法应该是:
- 为编码器模型设置export_name为"model"
- 为解码器模型设置export_name为"decoder"
然而在原始代码中,这些属性被错误地设置为方法对象,而非预期的字符串值。这导致在utils/export_utils.py中尝试拼接".onnx"后缀时出现类型不匹配错误。
解决方案
修复方案包含以下关键修改:
-
移除重复定义的export_rebuild_model函数,保留功能完整的版本。
-
显式设置encoder_model和decoder_model的export_name属性为字符串值:
encoder_model.export_name = 'model' decoder_model.export_name = 'decoder' -
保持其他导出相关配置不变,包括输入输出名称、动态轴设置等。
影响范围
该修复影响所有使用Paraformer流式模型(iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online)进行ONNX导出的用户。修复后,用户可以正常执行以下导出代码:
from funasr import AutoModel
model = AutoModel(model="iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online")
res = model.export(type="onnx", quantize=True)
技术建议
对于深度学习模型导出ONNX格式时,开发者应当注意:
-
确保所有参与导出的属性类型正确,特别是需要字符串拼接的属性。
-
避免代码中的重复定义,这可能导致不可预期的行为。
-
对于复杂的模型结构(如编码器-解码器架构),需要分别处理各部分的导出配置。
-
在修改导出逻辑时,应当同时更新相关的文档和示例代码。
该修复已合并到FunASR主分支,用户更新到最新版本即可解决此问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00