FunASR项目Paraformer流式模型ONNX导出问题分析与修复
问题背景
在FunASR项目中,Paraformer流式语音识别模型(iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online)的ONNX导出功能存在一个关键bug。当用户尝试使用AutoModel接口导出ONNX格式模型时,系统会抛出类型错误:"TypeError: unsupported operand type(s) for +: 'method' and 'str'"。
问题根源分析
该问题的根本原因在于export_meta.py文件中存在两个主要问题:
-
函数重复定义:文件中重复定义了export_rebuild_model函数,导致实际执行时可能调用错误的版本。
-
属性设置不当:在模型导出过程中,export_name属性被错误地设置为方法(MethodType)而非字符串值。当后续代码尝试将export_name与".onnx"字符串拼接时,就会触发类型错误。
技术细节
在FunASR的模型导出流程中,系统会为编码器(encoder)和解码器(decoder)分别创建导出配置。正确的做法应该是:
- 为编码器模型设置export_name为"model"
- 为解码器模型设置export_name为"decoder"
然而在原始代码中,这些属性被错误地设置为方法对象,而非预期的字符串值。这导致在utils/export_utils.py中尝试拼接".onnx"后缀时出现类型不匹配错误。
解决方案
修复方案包含以下关键修改:
-
移除重复定义的export_rebuild_model函数,保留功能完整的版本。
-
显式设置encoder_model和decoder_model的export_name属性为字符串值:
encoder_model.export_name = 'model' decoder_model.export_name = 'decoder' -
保持其他导出相关配置不变,包括输入输出名称、动态轴设置等。
影响范围
该修复影响所有使用Paraformer流式模型(iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online)进行ONNX导出的用户。修复后,用户可以正常执行以下导出代码:
from funasr import AutoModel
model = AutoModel(model="iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online")
res = model.export(type="onnx", quantize=True)
技术建议
对于深度学习模型导出ONNX格式时,开发者应当注意:
-
确保所有参与导出的属性类型正确,特别是需要字符串拼接的属性。
-
避免代码中的重复定义,这可能导致不可预期的行为。
-
对于复杂的模型结构(如编码器-解码器架构),需要分别处理各部分的导出配置。
-
在修改导出逻辑时,应当同时更新相关的文档和示例代码。
该修复已合并到FunASR主分支,用户更新到最新版本即可解决此问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00