FunASR项目中的ONNX模型导出问题分析与解决方案
问题背景
在使用FunASR 1.0.5版本进行语音识别模型导出时,用户遇到了ONNX格式导出失败的问题。具体表现为当尝试将Paraformer模型导出为ONNX格式时,系统抛出了一个索引错误,提示"tensors used as indices must be long, byte or bool tensors"。
错误分析
该错误发生在模型导出过程中的张量类型转换环节。具体来说,当FunASR尝试将PyTorch模型转换为ONNX格式时,模型内部的一个掩码生成操作出现了类型不匹配的问题。错误信息表明,系统期望使用long、byte或bool类型的张量作为索引,但实际传入的张量类型不符合要求。
技术细节
-
错误触发点:问题出现在FunASR的SANM编码器模块中,具体是在生成填充掩码(make_pad_mask)的过程中。
-
根本原因:在模型导出过程中,PyTorch的ONNX导出机制对张量类型有严格要求,而FunASR模型中的某些张量操作未能完全满足这些要求。
-
影响范围:该问题主要影响使用FunASR 1.0.5版本进行模型导出的用户,特别是那些需要将Paraformer模型转换为ONNX格式用于生产环境部署的场景。
解决方案
项目维护团队已经修复了这个问题。用户可以通过以下步骤解决问题:
- 更新FunASR到最新源代码版本
- 重新尝试模型导出操作
最佳实践建议
-
版本管理:在使用深度学习框架进行模型导出时,建议保持框架和依赖库的最新稳定版本。
-
类型检查:在自定义模型操作中,特别是涉及张量索引的操作,应确保张量类型符合要求。
-
导出验证:模型导出后,建议使用ONNX运行时进行验证测试,确保导出模型的正确性。
总结
FunASR作为一款优秀的语音识别框架,在模型导出功能上持续优化。用户遇到类似问题时,应及时检查版本兼容性,并关注项目更新。通过源代码更新可以快速解决这类导出问题,确保语音识别模型能够顺利部署到生产环境中。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00