FunASR项目中的ONNX模型导出问题分析与解决方案
问题背景
在使用FunASR 1.0.5版本进行语音识别模型导出时,用户遇到了ONNX格式导出失败的问题。具体表现为当尝试将Paraformer模型导出为ONNX格式时,系统抛出了一个索引错误,提示"tensors used as indices must be long, byte or bool tensors"。
错误分析
该错误发生在模型导出过程中的张量类型转换环节。具体来说,当FunASR尝试将PyTorch模型转换为ONNX格式时,模型内部的一个掩码生成操作出现了类型不匹配的问题。错误信息表明,系统期望使用long、byte或bool类型的张量作为索引,但实际传入的张量类型不符合要求。
技术细节
-
错误触发点:问题出现在FunASR的SANM编码器模块中,具体是在生成填充掩码(make_pad_mask)的过程中。
-
根本原因:在模型导出过程中,PyTorch的ONNX导出机制对张量类型有严格要求,而FunASR模型中的某些张量操作未能完全满足这些要求。
-
影响范围:该问题主要影响使用FunASR 1.0.5版本进行模型导出的用户,特别是那些需要将Paraformer模型转换为ONNX格式用于生产环境部署的场景。
解决方案
项目维护团队已经修复了这个问题。用户可以通过以下步骤解决问题:
- 更新FunASR到最新源代码版本
- 重新尝试模型导出操作
最佳实践建议
-
版本管理:在使用深度学习框架进行模型导出时,建议保持框架和依赖库的最新稳定版本。
-
类型检查:在自定义模型操作中,特别是涉及张量索引的操作,应确保张量类型符合要求。
-
导出验证:模型导出后,建议使用ONNX运行时进行验证测试,确保导出模型的正确性。
总结
FunASR作为一款优秀的语音识别框架,在模型导出功能上持续优化。用户遇到类似问题时,应及时检查版本兼容性,并关注项目更新。通过源代码更新可以快速解决这类导出问题,确保语音识别模型能够顺利部署到生产环境中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00