【亲测免费】 ML2Scratch:让机器学习触手可及的Scratch扩展
项目介绍
ML2Scratch 是一个基于 TensorFlow.js 的开源项目,旨在让用户通过Scratch平台轻松体验和使用机器学习。通过ML2Scratch,用户可以使用Web摄像头捕捉图像,并为这些图像添加标签进行训练,从而实现对新图像的分类。值得一提的是,所有训练和分类过程都在浏览器本地完成,无需将数据上传到服务器,确保了数据的安全性和隐私性。
ML2Scratch自2018年发布以来,一直以开源和免费的形式提供给用户,广泛应用于学校、编程教室等各种场合。为了持续开发和改进,项目团队希望得到用户的支持。您可以通过 一杯咖啡 的形式来支持我们。
项目技术分析
ML2Scratch的核心技术基于TensorFlow.js,这是一个在浏览器中运行机器学习模型的JavaScript库。通过TensorFlow.js,ML2Scratch能够在不依赖服务器的情况下,直接在用户的浏览器中进行机器学习模型的训练和推理。
项目的主要技术特点包括:
- 本地训练与推理:所有训练和推理过程都在浏览器中完成,无需上传数据到服务器。
- 多语言支持:支持英语、日语、简体中文和繁体中文等多种语言,方便全球用户使用。
- 灵活的图像源:用户可以选择使用Scratch舞台图像或Web摄像头图像进行训练和分类。
- 数据持久化:支持将训练数据和项目保存到本地,方便后续使用和分享。
项目及技术应用场景
ML2Scratch的应用场景非常广泛,特别适合以下领域:
- 教育领域:学校和编程教室可以使用ML2Scratch进行机器学习的基础教学,帮助学生理解机器学习的基本概念和应用。
- 创意编程:艺术家和设计师可以使用ML2Scratch创建基于机器学习的互动艺术作品。
- 智能家居:通过ML2Scratch,用户可以训练模型来识别家庭成员的手势或表情,从而控制智能家居设备。
- 游戏开发:游戏开发者可以使用ML2Scratch创建基于手势识别的游戏,增加游戏的互动性和趣味性。
项目特点
ML2Scratch具有以下显著特点:
- 易用性:通过Scratch的可视化编程界面,用户无需编写代码即可轻松上手机器学习。
- 安全性:所有数据处理都在本地完成,确保用户数据的安全和隐私。
- 灵活性:支持多种图像源和多语言界面,适应不同用户的需求。
- 开源免费:ML2Scratch是一个开源项目,用户可以自由使用、修改和分享。
结语
ML2Scratch为机器学习提供了一个简单易用的入口,让更多人能够轻松体验和应用这一前沿技术。无论您是教育工作者、创意编程爱好者,还是智能家居开发者,ML2Scratch都能为您提供强大的工具和支持。立即访问 ML2Scratch 主页,开始您的机器学习之旅吧!
支持我们:如果您喜欢ML2Scratch,请考虑通过 一杯咖啡 的形式支持我们的开发工作。您的支持将帮助我们持续改进和扩展这个项目。
联系我们:如果您有任何问题或建议,欢迎通过 Twitter 与我们联系。
加入社区:关注我们的社交媒体账号,获取最新动态和使用技巧,与其他用户交流分享您的创意和项目。
ML2Scratch,让机器学习触手可及!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00