PEFT项目中的past_key_values元组支持弃用问题解析
2025-05-12 08:31:07作者:伍希望
背景介绍
在Hugging Face的PEFT(Parameter-Efficient Fine-Tuning)项目中,近期出现了一个与Transformer模型缓存机制相关的重要变更。这个变更涉及到模型在处理过去键值(past_key_values)时的数据结构变化,将对所有提示学习(prompt learning)方法产生影响。
问题本质
问题的核心在于Transformer库将不再支持将past_key_values作为元组(tuple)处理,而是要求使用专门的Cache对象。这一变更源于Transformer库内部对缓存机制的改进和重构。
技术细节
在之前的实现中,PEFT项目中的提示学习方法(如prefix tuning)依赖于将past_key_values作为元组来处理。具体来说,在PeftModel类的get_prompt方法中,会生成虚拟提示(virtual prompts)并将其存储在past_key_values中。
随着Transformer库的更新,缓存机制发生了以下重要变化:
- 移除了对get_seq_length()方法的支持
- 不再自动将缓存转换为元组对象
- 引入了新的Cache类作为标准缓存数据结构
影响范围
这一变更将影响所有使用提示学习方法的场景,特别是:
- 前缀调优(Prefix Tuning)
- 提示调优(Prompt Tuning)
- 多任务提示调优(Multitask Prompt Tuning)
临时解决方案
在官方修复发布前,开发者可以采用以下临时解决方案:
from transformers import DynamicCache
# 在get_prompt方法中,将生成的past_key_values转换为Cache对象
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
长期解决方案
从长远来看,PEFT项目需要重构提示学习的实现方式,主要考虑以下方向:
- 训练阶段:
- 不再使用past_key_values传递虚拟提示
- 改为使用前向钩子(pre-forward hook)或重写forward方法注入虚拟嵌入
- 生成阶段:
- 仍需要使用缓存机制
- 但需要适配新的Cache对象标准
开发者建议
对于正在使用PEFT提示学习功能的开发者,建议:
- 关注PEFT项目的更新动态
- 在升级Transformer库版本时进行充分测试
- 考虑逐步迁移到新的缓存机制
- 对于关键应用,暂时固定库版本以避免兼容性问题
总结
这一变更反映了深度学习框架不断演进优化的过程。虽然短期内会带来一些适配工作,但从长期看,新的缓存机制将提供更好的性能和更清晰的接口。PEFT团队正在积极解决这一问题,开发者可以关注后续的官方更新和迁移指南。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K