PEFT项目中使用ChatGLM模型遇到的NoneType问题分析与解决
2025-05-12 11:24:19作者:宣利权Counsellor
问题背景
在使用PEFT(Parameter-Efficient Fine-Tuning)项目对ChatGLM模型进行微调时,开发者遇到了一个典型的错误:AttributeError: 'NoneType' object has no attribute 'shape'
。这个问题出现在尝试使用PromptEncoder对THUDM/glm-4-9b-chat模型进行参数高效微调时。
错误原因深度分析
该错误的根本原因在于ChatGLM模型的特殊实现方式与PEFT的PromptEncoder机制之间存在兼容性问题。具体表现为:
- 模型架构差异:ChatGLM模型采用了自定义的前向传播逻辑,与标准Transformer模型有所不同
- 输入处理方式:PromptEncoder在内部处理时会直接传递inputs_embeds而非input_ids
- 空值检查缺失:原始ChatGLM代码中缺少对input_ids为None情况的处理逻辑
解决方案实现
经过深入分析,我们确定了以下几种解决方案:
方案一:修改模型源码
在ChatGLM的modeling_chatglm.py文件中,需要对两处关键代码进行修改:
- 添加空值检查:在获取batch_size和seq_length时,需要同时考虑input_ids和inputs_embeds两种情况
- 完善注意力掩码生成:当full_attention_mask为None时,需要正确处理各种边界情况
具体修改如下:
# 修改点1:添加空值检查
if input_ids is not None:
batch_size, seq_length = input_ids.shape
else:
batch_size, seq_length, _ = inputs_embeds.shape
# 修改点2:完善注意力掩码生成
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
fake_ids = torch.zeros(batch_size, seq_length, dtype=torch.long, device=inputs_embeds.device)
full_attention_mask = self.get_masks(fake_ids, past_key_values, padding_mask=attention_mask)
方案二:使用Monkey Patching
对于不希望直接修改模型源码的情况,可以采用Monkey Patching的方式动态修改模型行为:
def patched_forward(self, *args, **kwargs):
# 自定义前向传播逻辑
...
original_forward = ChatGLMModel.forward
ChatGLMModel.forward = patched_forward
最佳实践建议
- 版本控制:确保使用兼容的transformers和peft版本(如transformers 4.43.3)
- 数据类型检查:在微调代码中添加完善的输入验证逻辑
- 调试信息:在关键步骤添加调试输出,便于问题定位
- 异常处理:对可能出现的边界情况进行妥善处理
扩展思考
这个问题反映了大型语言模型微调过程中的一个常见挑战:当使用自定义模型架构时,如何确保与参数高效微调方法的兼容性。开发者需要:
- 深入理解模型的前向传播逻辑
- 掌握PEFT各适配器的工作原理
- 具备调试复杂模型交互问题的能力
通过解决此类问题,我们不仅能够完成特定模型的微调任务,还能积累处理类似兼容性问题的宝贵经验,为未来使用其他自定义模型打下坚实基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K