PEFT项目中使用ChatGLM模型遇到的NoneType问题分析与解决
2025-05-12 18:15:57作者:宣利权Counsellor
问题背景
在使用PEFT(Parameter-Efficient Fine-Tuning)项目对ChatGLM模型进行微调时,开发者遇到了一个典型的错误:AttributeError: 'NoneType' object has no attribute 'shape'。这个问题出现在尝试使用PromptEncoder对THUDM/glm-4-9b-chat模型进行参数高效微调时。
错误原因深度分析
该错误的根本原因在于ChatGLM模型的特殊实现方式与PEFT的PromptEncoder机制之间存在兼容性问题。具体表现为:
- 模型架构差异:ChatGLM模型采用了自定义的前向传播逻辑,与标准Transformer模型有所不同
- 输入处理方式:PromptEncoder在内部处理时会直接传递inputs_embeds而非input_ids
- 空值检查缺失:原始ChatGLM代码中缺少对input_ids为None情况的处理逻辑
解决方案实现
经过深入分析,我们确定了以下几种解决方案:
方案一:修改模型源码
在ChatGLM的modeling_chatglm.py文件中,需要对两处关键代码进行修改:
- 添加空值检查:在获取batch_size和seq_length时,需要同时考虑input_ids和inputs_embeds两种情况
- 完善注意力掩码生成:当full_attention_mask为None时,需要正确处理各种边界情况
具体修改如下:
# 修改点1:添加空值检查
if input_ids is not None:
batch_size, seq_length = input_ids.shape
else:
batch_size, seq_length, _ = inputs_embeds.shape
# 修改点2:完善注意力掩码生成
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
fake_ids = torch.zeros(batch_size, seq_length, dtype=torch.long, device=inputs_embeds.device)
full_attention_mask = self.get_masks(fake_ids, past_key_values, padding_mask=attention_mask)
方案二:使用Monkey Patching
对于不希望直接修改模型源码的情况,可以采用Monkey Patching的方式动态修改模型行为:
def patched_forward(self, *args, **kwargs):
# 自定义前向传播逻辑
...
original_forward = ChatGLMModel.forward
ChatGLMModel.forward = patched_forward
最佳实践建议
- 版本控制:确保使用兼容的transformers和peft版本(如transformers 4.43.3)
- 数据类型检查:在微调代码中添加完善的输入验证逻辑
- 调试信息:在关键步骤添加调试输出,便于问题定位
- 异常处理:对可能出现的边界情况进行妥善处理
扩展思考
这个问题反映了大型语言模型微调过程中的一个常见挑战:当使用自定义模型架构时,如何确保与参数高效微调方法的兼容性。开发者需要:
- 深入理解模型的前向传播逻辑
- 掌握PEFT各适配器的工作原理
- 具备调试复杂模型交互问题的能力
通过解决此类问题,我们不仅能够完成特定模型的微调任务,还能积累处理类似兼容性问题的宝贵经验,为未来使用其他自定义模型打下坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92