深入解析lmdeploy与vLLM的显存管理参数差异
在部署大型语言模型时,显存管理是影响性能和稳定性的关键因素。本文将通过对比分析lmdeploy和vLLM两个框架的显存管理机制,帮助开发者更好地理解和使用这些工具。
显存管理参数对比
vLLM的gpu-memory-utilization
vLLM框架提供了gpu-memory-utilization
参数,这是一个直观的显存利用率设置。开发者可以简单地指定一个0到1之间的数值,表示允许框架使用的GPU显存比例。例如,设置为0.8表示允许使用80%的显存资源。
lmdeploy的显存管理机制
lmdeploy采用了更为精细的显存管理方式,主要通过两个参数控制:
-
cache-block-seq-len:定义单个KV缓存块能够容纳的token数量。这个参数直接影响KV缓存的分配粒度,需要根据具体模型和硬件环境进行调整。
-
cache_max_entry_count:这是与vLLM的
gpu-memory-utilization
功能类似的参数,用于限制KV缓存占用的显存总量。开发者可以通过这个参数精确控制显存使用量。
多实例部署策略
在实际生产环境中,开发者经常需要考虑多实例部署方案。根据测试数据,在单卡显存足够容纳模型的情况下,可以考虑以下两种部署方式:
-
单卡多实例:在显存充足的情况下,可以尝试在单卡上启动多个服务实例。但需要注意,这种方式可能会因为计算资源竞争而导致性能下降。
-
多卡并行:当单卡显存不足时,需要使用张量并行(TP)技术将模型分布到多张GPU上。lmdeploy通过
-tp
参数支持这种部署方式。
性能优化建议
-
参数选择:对于大多数场景,建议优先使用
cache_max_entry_count
来控制显存使用,这比直接调整cache-block-seq-len
更为直观和方便。 -
部署策略:在24GB显存的GPU上部署14B参数的4bit量化模型时,可以考虑单卡部署。而对于更大的32B模型,则需要使用多卡并行方案。
-
性能监控:建议在实际部署时监控显存使用情况和推理延迟,根据实际表现调整参数配置。
总结
lmdeploy和vLLM都提供了灵活的显存管理机制,但采用了不同的参数设计理念。理解这些参数的底层原理和使用场景,可以帮助开发者更高效地部署大型语言模型服务。在实际应用中,建议根据具体硬件配置和性能需求,选择合适的参数组合和部署策略。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
项目优选









