LMDeploy与vLLM在Qwen2.5-32B模型上的推理性能对比分析
2025-06-04 17:59:39作者:胡易黎Nicole
在模型推理领域,LMDeploy和vLLM都是当前流行的推理框架。本文针对Qwen2.5-32B-Instruct-AWQ模型,对这两个框架在不同批处理规模下的性能表现进行了深入分析。
测试环境与方法
测试使用了NVIDIA 3090 GPU,模型为Qwen2.5-32B-Instruct-AWQ量化版本。测试分为单条推理和批量推理两种场景:
- 单条推理:LMDeploy比vLLM快约1.6倍
- 批量推理:当batch_size增大时,两者性能差距缩小至约1.1倍
性能差异的技术解析
这种性能差异主要源于以下几个技术因素:
-
量化与反量化开销:
- AWQ量化模型在推理时需要额外的反量化操作
- 小batch时,计算密集型操作占主导,量化带来的计算量减少效果明显
- 大batch时,内存带宽成为瓶颈,反量化操作的开销占比增加
-
内存管理策略:
- LMDeploy的
cache_max_entry_count参数控制KV缓存利用率 - 测试发现设置为0.85时稳定运行,0.9时batch_size超过5会出现问题
- 这表明LMDeploy的内存管理策略在大batch时需要更精细的调优
- LMDeploy的
-
并行计算效率:
- 测试配置了tensor_parallel_size=2
- 随着batch增大,并行计算的通信开销占比增加
- 这削弱了量化带来的性能优势
实际应用建议
基于测试结果,对于Qwen2.5-32B模型的使用建议:
- 低并发场景:优先选择LMDeploy,可获得1.6倍的性能提升
- 高并发场景:两种框架性能接近,可根据其他因素(如功能支持)选择
- 内存配置:建议
cache_max_entry_count设置为0.85以保证稳定性 - 性能调优:需要根据实际工作负载特点进行参数优化
技术展望
随着模型规模的增大和量化技术的发展,推理框架的优化空间仍然很大。未来的优化方向可能包括:
- 更高效的反量化实现
- 动态批处理策略优化
- 混合精度计算的应用
- 内存管理算法的改进
这些技术进步将进一步提升大模型在实际应用中的推理效率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
667
153
Ascend Extension for PyTorch
Python
216
235
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
304
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
255
321
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
652
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866