探索视频中行为识别:Action Recognition in Video
2024-06-07 16:13:00作者:郦嵘贵Just
在这个激动人心的开源项目中,我们聚焦于解决视频中的行为识别问题。借助UCF-101数据集,开发者可以深入研究和实验各种不同的解决方案。

项目设置
项目易于上手,只需按照以下步骤进行:
- 进入
data/目录。 - 运行
download_ucf101.sh脚本下载约7.2GB的UCF-101数据集。 - 解压缩数据集(使用
unrar x UCF101.rar)。 - 解压ucfTrainTestlist.zip文件。
- 最后,运行
python3 extract_frames.py从视频中提取帧(这可能需要一段时间,请耐心等待)。
ConvLSTM模型
目前,该项目已探索了一种基于卷积LSTM的方法,它通过双向LSTM对预训练的ResNet-152提供的帧嵌入进行操作,以预测视频中的活动。模型结构包括:
- 用于提供视频帧潜在表示的卷积特征提取器(ResNet-152)。
- 基于这些帧的潜在表示,双向LSTM分类器来判断视频中的动作。
已经提供了一个预先训练好的模型,可以在此处获取。
训练模型
$ python3 train.py --dataset_path data/UCF-101-frames/ \
--split_path data/ucfTrainTestlist \
--num_epochs 200 \
--sequence_length 40 \
--img_dim 112 \
--latent_dim 512
在视频上测试
$ python3 test_on_video.py --video_path data/UCF-101/SoccerPenalty/v_SoccerPenalty_g01_c01.avi \
--checkpoint_model model_checkpoints/ConvLSTM_150.pth

结果
在随机采样的测试集中(占UCF-101总数的20%),该模型达到了**91.27%**的分类精度。计划在官方的训练/测试分割上重新训练模型,并在有时间时发布结果。
应用场景与项目特点
- 广泛应用:这个项目对于开发视频监控系统、体育赛事分析软件或社交媒体内容分析工具等有着广泛的应用潜力。
- 直观易用:清晰的代码结构和文档使得轻松上手和调整参数成为可能。
- 强大模型:基于ConvLSTM的模型设计,能够捕捉到视频序列的时间动态,提高了行为识别的准确性。
- 预训练模型:提供预训练模型,用户可以直接试用,节省大量训练时间。
无论你是深度学习初学者还是经验丰富的研究人员,这个项目都是一个绝佳的学习资源和实践平台。加入我们,一起探索视频行为识别的世界吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
653
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
641
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言测试用例。
Cangjie
37
856