探索视频中行为识别:Action Recognition in Video
2024-06-07 16:13:00作者:郦嵘贵Just
在这个激动人心的开源项目中,我们聚焦于解决视频中的行为识别问题。借助UCF-101数据集,开发者可以深入研究和实验各种不同的解决方案。

项目设置
项目易于上手,只需按照以下步骤进行:
- 进入
data/目录。 - 运行
download_ucf101.sh脚本下载约7.2GB的UCF-101数据集。 - 解压缩数据集(使用
unrar x UCF101.rar)。 - 解压ucfTrainTestlist.zip文件。
- 最后,运行
python3 extract_frames.py从视频中提取帧(这可能需要一段时间,请耐心等待)。
ConvLSTM模型
目前,该项目已探索了一种基于卷积LSTM的方法,它通过双向LSTM对预训练的ResNet-152提供的帧嵌入进行操作,以预测视频中的活动。模型结构包括:
- 用于提供视频帧潜在表示的卷积特征提取器(ResNet-152)。
- 基于这些帧的潜在表示,双向LSTM分类器来判断视频中的动作。
已经提供了一个预先训练好的模型,可以在此处获取。
训练模型
$ python3 train.py --dataset_path data/UCF-101-frames/ \
--split_path data/ucfTrainTestlist \
--num_epochs 200 \
--sequence_length 40 \
--img_dim 112 \
--latent_dim 512
在视频上测试
$ python3 test_on_video.py --video_path data/UCF-101/SoccerPenalty/v_SoccerPenalty_g01_c01.avi \
--checkpoint_model model_checkpoints/ConvLSTM_150.pth

结果
在随机采样的测试集中(占UCF-101总数的20%),该模型达到了**91.27%**的分类精度。计划在官方的训练/测试分割上重新训练模型,并在有时间时发布结果。
应用场景与项目特点
- 广泛应用:这个项目对于开发视频监控系统、体育赛事分析软件或社交媒体内容分析工具等有着广泛的应用潜力。
- 直观易用:清晰的代码结构和文档使得轻松上手和调整参数成为可能。
- 强大模型:基于ConvLSTM的模型设计,能够捕捉到视频序列的时间动态,提高了行为识别的准确性。
- 预训练模型:提供预训练模型,用户可以直接试用,节省大量训练时间。
无论你是深度学习初学者还是经验丰富的研究人员,这个项目都是一个绝佳的学习资源和实践平台。加入我们,一起探索视频行为识别的世界吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135