深入视频修复:Deep Video Inpainting 开源项目详解
2024-06-07 15:56:16作者:瞿蔚英Wynne
1、项目介绍
Deep_Video_Inpainting 是一个基于PyTorch的深度学习项目,由Dahun Kim等人在CVPR 2019和TPAMI 2020上发表,并提供了官方实现。该项目旨在解决视频中特定区域的修复问题,如人物遮挡、背景破损等,通过创新的算法生成逼真的连续动态画面,从而达到视频修复的效果。

这两张图片展示了项目的效果,可以看到即使在复杂的运动场景中,被修复的部分也能与原视频无缝融合,呈现出高度自然的视觉效果。
2、项目技术分析
Deep_Video_Inpainting 使用了递归时空聚合框架(Recurrent Temporal Aggregation Framework),结合Resample2d和Correlation等模块进行编解码处理。该模型不仅考虑了空间信息,还充分利用了时间序列中的连续性,通过时空卷积和循环神经网络来逐步完善视频帧。此外,它还引入了一种视频重目标定位(Video Retargeting)策略,允许修复后的视频适应不同分辨率或尺寸。
3、项目及技术应用场景
- 视频修复与编辑:对于破损或者有瑕疵的视频文件,可以利用这个项目进行修复,使其恢复原有的质量和完整性。
- 内容创作与特效:在电影制作、广告设计等领域,可以移除或替换视频中的特定元素,创造出新的视觉效果。
- 隐私保护:在监控视频或社交媒体分享的视频中,可以通过遮盖敏感区域,保护个人隐私。
- 数据增强:在计算机视觉任务的训练中,可以用此方法对原始数据进行修改,增加数据集的多样性。
4、项目特点
- 高效算法:利用递归神经网络和时空卷积,有效捕捉和利用视频的时间依赖性。
- 易于使用:提供预训练模型,支持快速测试和演示,无需从头训练。
- 兼容性强:已验证在Python 3.7和PyTorch 1.4环境下运行良好,适配Cuda 10.0。
- 广泛应用:除了基本的视频修复功能,还可以进行视频重目标定位,增加了使用的灵活性。
如何尝试 Deep_Video_Inpainting?
- 创建并激活名为
vinet的conda环境,安装所需版本的Python和PyTorch库。 - 编译依赖项
Resample2d和Correlation。 - 下载预训练权重文件并放置于指定目录。
- 运行演示脚本,即可看到修复结果。
如有兴趣在视频中删除特定对象,请参考作者的另一个项目BVDNet,它专注于视频字幕移除。
最后,如果你在研究中使用了此项目,请引用相关论文:
@inproceedings{kim2019deep,
title={Deep Video Inpainting},
author={Kim, Dahun and Woo, Sanghyun and Lee, Joon-Young and Kweon, In So},
booktitle={ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition },
pages={5792--5801},
year={2019},
}
@ARTICLE{kim2020vipami,
author={Kim, Dahun and Woo, Sanghyun and Lee, Joon-Young and Kweon, In So},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Recurrent Temporal Aggregation Framework for Deep Video Inpainting},
year={2020},
volume={42},
number={5},
pages={1038-1052},
}
探索 Deep_Video_Inpainting ,开启您的视频修复之旅吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869