深入视频修复:Deep Video Inpainting 开源项目详解
2024-06-07 15:56:16作者:瞿蔚英Wynne
1、项目介绍
Deep_Video_Inpainting
是一个基于PyTorch的深度学习项目,由Dahun Kim等人在CVPR 2019和TPAMI 2020上发表,并提供了官方实现。该项目旨在解决视频中特定区域的修复问题,如人物遮挡、背景破损等,通过创新的算法生成逼真的连续动态画面,从而达到视频修复的效果。
这两张图片展示了项目的效果,可以看到即使在复杂的运动场景中,被修复的部分也能与原视频无缝融合,呈现出高度自然的视觉效果。
2、项目技术分析
Deep_Video_Inpainting
使用了递归时空聚合框架(Recurrent Temporal Aggregation Framework),结合Resample2d和Correlation等模块进行编解码处理。该模型不仅考虑了空间信息,还充分利用了时间序列中的连续性,通过时空卷积和循环神经网络来逐步完善视频帧。此外,它还引入了一种视频重目标定位(Video Retargeting)策略,允许修复后的视频适应不同分辨率或尺寸。
3、项目及技术应用场景
- 视频修复与编辑:对于破损或者有瑕疵的视频文件,可以利用这个项目进行修复,使其恢复原有的质量和完整性。
- 内容创作与特效:在电影制作、广告设计等领域,可以移除或替换视频中的特定元素,创造出新的视觉效果。
- 隐私保护:在监控视频或社交媒体分享的视频中,可以通过遮盖敏感区域,保护个人隐私。
- 数据增强:在计算机视觉任务的训练中,可以用此方法对原始数据进行修改,增加数据集的多样性。
4、项目特点
- 高效算法:利用递归神经网络和时空卷积,有效捕捉和利用视频的时间依赖性。
- 易于使用:提供预训练模型,支持快速测试和演示,无需从头训练。
- 兼容性强:已验证在Python 3.7和PyTorch 1.4环境下运行良好,适配Cuda 10.0。
- 广泛应用:除了基本的视频修复功能,还可以进行视频重目标定位,增加了使用的灵活性。
如何尝试 Deep_Video_Inpainting
?
- 创建并激活名为
vinet
的conda环境,安装所需版本的Python和PyTorch库。 - 编译依赖项
Resample2d
和Correlation
。 - 下载预训练权重文件并放置于指定目录。
- 运行演示脚本,即可看到修复结果。
如有兴趣在视频中删除特定对象,请参考作者的另一个项目BVDNet,它专注于视频字幕移除。
最后,如果你在研究中使用了此项目,请引用相关论文:
@inproceedings{kim2019deep,
title={Deep Video Inpainting},
author={Kim, Dahun and Woo, Sanghyun and Lee, Joon-Young and Kweon, In So},
booktitle={ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition },
pages={5792--5801},
year={2019},
}
@ARTICLE{kim2020vipami,
author={Kim, Dahun and Woo, Sanghyun and Lee, Joon-Young and Kweon, In So},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Recurrent Temporal Aggregation Framework for Deep Video Inpainting},
year={2020},
volume={42},
number={5},
pages={1038-1052},
}
探索 Deep_Video_Inpainting
,开启您的视频修复之旅吧!
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5