深入视频修复:Deep Video Inpainting 开源项目详解
2024-06-07 15:56:16作者:瞿蔚英Wynne
1、项目介绍
Deep_Video_Inpainting
是一个基于PyTorch的深度学习项目,由Dahun Kim等人在CVPR 2019和TPAMI 2020上发表,并提供了官方实现。该项目旨在解决视频中特定区域的修复问题,如人物遮挡、背景破损等,通过创新的算法生成逼真的连续动态画面,从而达到视频修复的效果。
这两张图片展示了项目的效果,可以看到即使在复杂的运动场景中,被修复的部分也能与原视频无缝融合,呈现出高度自然的视觉效果。
2、项目技术分析
Deep_Video_Inpainting
使用了递归时空聚合框架(Recurrent Temporal Aggregation Framework),结合Resample2d和Correlation等模块进行编解码处理。该模型不仅考虑了空间信息,还充分利用了时间序列中的连续性,通过时空卷积和循环神经网络来逐步完善视频帧。此外,它还引入了一种视频重目标定位(Video Retargeting)策略,允许修复后的视频适应不同分辨率或尺寸。
3、项目及技术应用场景
- 视频修复与编辑:对于破损或者有瑕疵的视频文件,可以利用这个项目进行修复,使其恢复原有的质量和完整性。
- 内容创作与特效:在电影制作、广告设计等领域,可以移除或替换视频中的特定元素,创造出新的视觉效果。
- 隐私保护:在监控视频或社交媒体分享的视频中,可以通过遮盖敏感区域,保护个人隐私。
- 数据增强:在计算机视觉任务的训练中,可以用此方法对原始数据进行修改,增加数据集的多样性。
4、项目特点
- 高效算法:利用递归神经网络和时空卷积,有效捕捉和利用视频的时间依赖性。
- 易于使用:提供预训练模型,支持快速测试和演示,无需从头训练。
- 兼容性强:已验证在Python 3.7和PyTorch 1.4环境下运行良好,适配Cuda 10.0。
- 广泛应用:除了基本的视频修复功能,还可以进行视频重目标定位,增加了使用的灵活性。
如何尝试 Deep_Video_Inpainting
?
- 创建并激活名为
vinet
的conda环境,安装所需版本的Python和PyTorch库。 - 编译依赖项
Resample2d
和Correlation
。 - 下载预训练权重文件并放置于指定目录。
- 运行演示脚本,即可看到修复结果。
如有兴趣在视频中删除特定对象,请参考作者的另一个项目BVDNet,它专注于视频字幕移除。
最后,如果你在研究中使用了此项目,请引用相关论文:
@inproceedings{kim2019deep,
title={Deep Video Inpainting},
author={Kim, Dahun and Woo, Sanghyun and Lee, Joon-Young and Kweon, In So},
booktitle={ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition },
pages={5792--5801},
year={2019},
}
@ARTICLE{kim2020vipami,
author={Kim, Dahun and Woo, Sanghyun and Lee, Joon-Young and Kweon, In So},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Recurrent Temporal Aggregation Framework for Deep Video Inpainting},
year={2020},
volume={42},
number={5},
pages={1038-1052},
}
探索 Deep_Video_Inpainting
,开启您的视频修复之旅吧!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0329- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3