MicroK8s中使用containerd对接GCP Artifact Registry的认证问题解析
背景介绍
在Kubernetes环境中使用Google Cloud Platform(GCP)的Artifact Registry作为私有容器镜像仓库时,很多用户会遇到containerd无法正确认证的问题。特别是在MicroK8s这类轻量级Kubernetes发行版中,由于直接使用containerd作为容器运行时,认证配置与传统Docker有所不同。
问题现象
当尝试通过containerd从GCP Artifact Registry拉取镜像时,常见会遇到401未授权的错误。错误信息通常显示无法获取oauth token,表明认证流程未能正确完成。这与Kubernetes通过.dockerconfig secret方式能够正常拉取镜像形成对比。
根本原因分析
containerd对GCP认证的处理机制与Docker有所不同。GCP Artifact Registry使用的是基于服务账户密钥的OAuth2.0认证流程,需要containerd能够正确处理JSON密钥文件并自动获取和刷新访问令牌。
解决方案
正确的containerd认证配置
经过验证,正确的containerd配置应使用以下格式:
[plugins.cri.registry]
[plugins.cri.registry.configs]
[plugins.cri.registry.configs."europe-docker.pkg.dev"]
[plugins.cri.registry.configs."europe-docker.pkg.dev".auth]
username = "_json_key_base64"
password = "base64编码的服务账户密钥文件内容"
或者直接使用JSON密钥:
[plugins.cri.registry]
[plugins.cri.registry.configs]
[plugins.cri.registry.configs."europe-docker.pkg.dev"]
[plugins.cri.registry.configs."europe-docker.pkg.dev".auth]
username = "_json_key"
password = "完整的服务账户JSON密钥内容"
关键注意事项
-
密钥格式处理:当使用JSON密钥时,必须确保密钥中的换行符(\n)被正确保留,特别是在YAML/TOML配置中需要使用适当的引号包裹。
-
域名匹配:必须使用完整的registry域名(如"europe-docker.pkg.dev"),不能使用通配符形式(如"*.pkg.dev"),containerd对域名的匹配是精确的。
-
base64编码:如果选择base64编码方式,需要确保是对整个JSON密钥文件进行编码,而不仅仅是密钥内容。
替代方案比较
虽然可以通过Kubelet的CredentialProvider机制实现自动认证(使用GCP提供的auth-provider-gcp二进制),但在MicroK8s环境中直接配置containerd是更简单直接的解决方案,不需要额外的组件和配置。
最佳实践建议
-
为Artifact Registry创建专用的服务账户,并仅授予必要的最小权限。
-
优先使用base64编码方式,可以避免JSON格式在配置文件中的解析问题。
-
在MicroK8s中,可以通过编辑
/var/snap/microk8s/current/args/containerd-template.toml文件来配置registry认证。 -
配置完成后需要重启containerd服务使更改生效。
总结
通过正确配置containerd的registry认证信息,可以解决MicroK8s从GCP Artifact Registry拉取镜像的认证问题。关键在于理解containerd与Docker在认证处理上的差异,并采用适合的JSON密钥配置方式。这种方法既保持了安全性,又简化了集群配置,是生产环境推荐的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00