MicroK8s中metrics-server镜像拉取失败问题分析与解决方案
2025-05-26 17:23:47作者:秋阔奎Evelyn
问题背景
在使用MicroK8s v1.28.3版本部署Kubernetes集群时,用户遇到了metrics-server插件无法正常启动的问题。通过检查Pod状态发现metrics-server处于ImagePullBackOff状态,原因是无法从默认的registry.k8s.io仓库拉取metrics-server:v0.6.3镜像。
问题分析
metrics-server是Kubernetes集群中用于收集资源指标的核心组件,它定期从各节点的kubelet收集CPU、内存等资源使用情况。当镜像拉取失败时,会导致以下问题:
- 集群监控功能不可用
- kubectl top命令无法使用
- HPA(Horizontal Pod Autoscaler)等依赖资源指标的组件无法正常工作
通过查看Pod事件日志,可以看到具体的错误信息是拉取registry.k8s.io/metrics-server/metrics-server:v0.6.3镜像时超时失败。这通常是由以下原因导致:
- 网络连接问题,无法访问registry.k8s.io
- 镜像仓库限流或不可用
- 镜像版本已被移除或更新
解决方案
方法一:使用替代镜像源
- 修改metrics-server的部署配置:
cd /var/snap/microk8s/common/addons/core/addons/metrics-server
vim metrics-server.yaml
- 将镜像地址修改为替代镜像源:
containers:
- image: bitnami/metrics-server:0.6.4
imagePullPolicy: IfNotPresent
- 同时建议添加以下参数以忽略kubelet证书验证:
args:
- --kubelet-insecure-tls
方法二:配置镜像仓库镜像
如果集群中普遍存在镜像拉取问题,可以配置MicroK8s使用镜像仓库:
- 编辑containerd配置:
vim /var/snap/microk8s/current/args/containerd-template.toml
- 添加镜像仓库镜像配置:
[plugins."io.containerd.grpc.v1.cri".registry.mirrors]
[plugins."io.containerd.grpc.v1.cri".registry.mirrors."docker.io"]
endpoint = ["https://registry-1.docker.io"]
[plugins."io.containerd.grpc.v1.cri".registry.mirrors."registry.k8s.io"]
endpoint = ["https://k8s.gcr.io"]
方法三:手动导入镜像
对于完全离线的环境,可以手动下载镜像并导入:
- 在有网络的环境中拉取镜像:
docker pull bitnami/metrics-server:0.6.4
docker save bitnami/metrics-server:0.6.4 > metrics-server.tar
- 将镜像传输到目标机器并导入:
microk8s ctr image import metrics-server.tar
验证解决方案
应用修改后,执行以下命令验证metrics-server是否正常运行:
microk8s kubectl get pods -n kube-system
microk8s kubectl top nodes
最佳实践建议
- 对于生产环境,建议使用私有镜像仓库托管所有依赖镜像
- 定期检查并更新组件版本,避免使用已弃用的镜像版本
- 考虑使用kubeadm等工具配置镜像拉取策略和备用镜像源
- 对于关键组件,配置适当的资源请求和限制,确保稳定运行
通过以上方法,可以有效解决MicroK8s中metrics-server镜像拉取失败的问题,确保集群监控功能的正常运行。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
654
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
641
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言测试用例。
Cangjie
37
857