AXLearn项目中的Artifact Registry bundler功能变更解析
在AXLearn项目的使用过程中,近期发现了一个关于Artifact Registry bundler功能的重要变更。本文将从技术角度分析这一变更的背景、影响以及解决方案。
背景介绍
Artifact Registry是Google Cloud提供的一项服务,用于存储和管理容器镜像等构建工件。在AXLearn项目中,原本支持通过axlearn gke start
命令直接使用Artifact Registry bundler功能,该功能会自动执行docker build
和docker push
操作,将构建好的镜像推送到Artifact Registry,然后用于后续的Kubernetes作业。
变更分析
在项目提交a5ffd08a75e23edbb1c3b6c33570ba7ac5ef4405中,移除了对GAR(GCP Artifact Registry) bundling的直接支持。这一变更实际上是项目重构过程中的过渡性修改,目的是为了后续将axlearn gke start
与axlearn gcp launch
命令进行整合,简化用户体验。
影响评估
这一变更影响了依赖Artifact Registry bundler进行测试的用户工作流程。原本可以通过单一命令完成镜像构建和作业提交的操作,现在需要分两步进行。
临时解决方案
目前可以采用以下工作流程来继续使用Artifact Registry bundler功能:
- 首先使用
axlearn gcp bundle
命令构建并推送镜像:
axlearn gcp bundle --name=$USER-custom-bundle \
--bundler_spec=allow_dirty=True \
--bundler_type=artifactregistry --bundler_spec=image=tpu \
--bundler_spec=dockerfile=Dockerfile --bundler_spec=target=tpu
- 然后使用
axlearn gcp gke start
命令提交作业,确保使用相同的--name
参数值:
axlearn gcp gke start --cluster=$USER-axlearn2 --name=$USER-custom-bundle \
--instance_type=tpu-v6e-16 \
--num_replicas=1 \
--bundler_spec=allow_dirty=True \
--bundler_type=artifactregistry --bundler_spec=image=tpu \
--bundler_spec=dockerfile=Dockerfile --bundler_spec=target=tpu \
-- python3 -m axlearn.common.launch_trainer_main \
--module=text.gpt.c4_trainer --config=fuji-7B-v2-flash-single-host \
--trainer_dir=gs://$PROJECT_ID-axlearn/$USER-v6e-7b-1/ \
--data_dir=gs://axlearn-public/tensorflow_datasets \
--jax_backend=tpu \
--mesh_selector=tpu-v6e-16 \
--trace_at_steps=3
未来展望
根据项目维护者的说明,这一变更是为了后续更简洁的命令行体验做准备。新的实现将统一axlearn gke start
和axlearn gcp launch
命令,并增加本地运行支持,预计将在近期提交。
总结
对于AXLearn用户来说,目前需要暂时采用两步法来使用Artifact Registry bundler功能。这一过渡期解决方案虽然增加了操作步骤,但确保了功能的可用性。随着项目的发展,未来将提供更简洁统一的命令行体验。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









