AXLearn项目中的Artifact Registry bundler功能变更解析
在AXLearn项目的使用过程中,近期发现了一个关于Artifact Registry bundler功能的重要变更。本文将从技术角度分析这一变更的背景、影响以及解决方案。
背景介绍
Artifact Registry是Google Cloud提供的一项服务,用于存储和管理容器镜像等构建工件。在AXLearn项目中,原本支持通过axlearn gke start
命令直接使用Artifact Registry bundler功能,该功能会自动执行docker build
和docker push
操作,将构建好的镜像推送到Artifact Registry,然后用于后续的Kubernetes作业。
变更分析
在项目提交a5ffd08a75e23edbb1c3b6c33570ba7ac5ef4405中,移除了对GAR(GCP Artifact Registry) bundling的直接支持。这一变更实际上是项目重构过程中的过渡性修改,目的是为了后续将axlearn gke start
与axlearn gcp launch
命令进行整合,简化用户体验。
影响评估
这一变更影响了依赖Artifact Registry bundler进行测试的用户工作流程。原本可以通过单一命令完成镜像构建和作业提交的操作,现在需要分两步进行。
临时解决方案
目前可以采用以下工作流程来继续使用Artifact Registry bundler功能:
- 首先使用
axlearn gcp bundle
命令构建并推送镜像:
axlearn gcp bundle --name=$USER-custom-bundle \
--bundler_spec=allow_dirty=True \
--bundler_type=artifactregistry --bundler_spec=image=tpu \
--bundler_spec=dockerfile=Dockerfile --bundler_spec=target=tpu
- 然后使用
axlearn gcp gke start
命令提交作业,确保使用相同的--name
参数值:
axlearn gcp gke start --cluster=$USER-axlearn2 --name=$USER-custom-bundle \
--instance_type=tpu-v6e-16 \
--num_replicas=1 \
--bundler_spec=allow_dirty=True \
--bundler_type=artifactregistry --bundler_spec=image=tpu \
--bundler_spec=dockerfile=Dockerfile --bundler_spec=target=tpu \
-- python3 -m axlearn.common.launch_trainer_main \
--module=text.gpt.c4_trainer --config=fuji-7B-v2-flash-single-host \
--trainer_dir=gs://$PROJECT_ID-axlearn/$USER-v6e-7b-1/ \
--data_dir=gs://axlearn-public/tensorflow_datasets \
--jax_backend=tpu \
--mesh_selector=tpu-v6e-16 \
--trace_at_steps=3
未来展望
根据项目维护者的说明,这一变更是为了后续更简洁的命令行体验做准备。新的实现将统一axlearn gke start
和axlearn gcp launch
命令,并增加本地运行支持,预计将在近期提交。
总结
对于AXLearn用户来说,目前需要暂时采用两步法来使用Artifact Registry bundler功能。这一过渡期解决方案虽然增加了操作步骤,但确保了功能的可用性。随着项目的发展,未来将提供更简洁统一的命令行体验。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~092Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile01
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









