项目推荐:多类别聚焦损失(Multi-class Focal Loss)
2024-06-08 13:51:58作者:胡唯隽
项目推荐:多类别聚焦损失(Multi-class Focal Loss)
1、项目介绍
在计算机视觉的分类任务中,面对严重类不平衡问题时,传统交叉熵损失函数往往难以应对。为了解决这一难题,我们向您推荐一个基于PyTorch实现的多类别聚焦损失(Multi-class Focal Loss)项目。这个项目是RetinaNet论文中提出的二元聚焦损失的扩展版,适用于多类别分类任务。聚焦损失的主要目标是通过降低简单样本的权重,使得模型能更加关注那些难辨别的实例。
2、项目技术分析
该项目提供了一个名为FocalLoss的模块,它继承自nn.Module,且与nn.CrossEntropyLoss()有类似的行为。用户可以自由选择减小方式(reduction参数),并忽略特定标签(ignore_index参数)。此外,无论是2D输入还是更高维度的K-Dimensional输入,该模块都能处理。其核心思想是引入了α和γ两个超参数,分别调整不同类别的重要性以及对难例的关注程度。
3、项目及技术应用场景
多类别聚焦损失主要应用于存在显著类不平衡的场景,如目标检测、语义分割或医学图像分析等。在这些领域,某些类别的实例可能远比其他类别少,导致训练过程中容易过拟合到多数类。使用该模块,您可以使模型更好地平衡各个类别的学习,提高整体性能。
4、项目特点
- 兼容性广泛:支持2D和K维输入,可与各种深度学习框架无缝集成。
- 易用性高:通过简单的调用即可创建和使用
FocalLoss对象。 - 灵活性强:支持
torch.hub加载,可以方便地在代码中导入,并定制α和γ值以适应不同任务需求。 - 适用性广:不仅适用于研究,也适合生产环境中的实际应用,有效解决类不平衡问题。
通过以下Python示例,您可以轻松尝试此项目:
focal_loss = torch.hub.load('adeelh/pytorch-multi-class-focal-loss', 'FocalLoss', alpha=torch.tensor([.75, .25]), gamma=2, reduction='mean')
x, y = torch.randn(10, 2), (torch.rand(10) > .5).long()
loss = focal_loss(x, y)
总的来说,多类别聚焦损失项目是一个强大且灵活的工具,对于任何面临类不平衡挑战的深度学习开发者来说,都是一个值得尝试的选择。立即加入社区,利用这项技术提升您的模型性能吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328