推荐:Focal Loss —— 优化不平衡数据集的损失函数
2024-05-23 11:26:20作者:乔或婵
在深度学习领域,处理类别不平衡的数据集是一个常见的挑战。传统的交叉熵损失函数可能过于关注多数类别的样本,而对少数类别的识别效果欠佳。为了解决这一问题,我们向您推荐一个名为Focal Loss的优秀开源项目,它以Keras实现,专用于调整训练过程中的权重分布,提高难以分类样本的重视度。
1、项目介绍
Focal Loss是针对二元和多类别分类任务的一种自定义损失函数,源于2017年的论文。通过给易于分类的样例分配较小的权重,项目重点聚焦于那些难以区分的实例,从而在训练中改善模型对于少数类别的表现。其核心思想是使用伽马参数(γ)来调整难易程度的影响,并通过阿尔法参数(α)平衡不同类别的权重。
2、项目技术分析
Focal Loss在Keras中实现了两种形式:二元(binary)和多类别(categorical)。编译模型时,只需将相应的损失函数binary_focal_loss或categorical_focal_loss与优化器和指标一起传递即可。此外,项目还提供了如何在已训练的Keras模型转换为TensorFlow推理模型时处理自定义损失函数的指南。
3、项目及技术应用场景
Focal Loss特别适用于以下场景:
- 图像识别:如医学图像、自动驾驶等,这些领域往往存在类别严重不平衡的问题。
- 自然语言处理:情感分析、关键词提取等,某些标签可能非常稀少。
- 生物信息学:基因组学研究中的分类问题,其中部分类别的样本数量远小于其他类别。
4、项目特点
- 简单集成: 可直接在Keras模型编译阶段使用,无需额外代码库。
- 高度可定制: 支持调整伽马和阿尔法参数,以适应不同的数据分布和需求。
- 兼容性强: 提供了从Keras模型到TensorFlow推理模型的转换指南,便于部署到生产环境。
- 社区活跃: 项目维护良好,持续更新,且有详细的文档示例,方便开发者使用。
综上所述,无论您是初学者还是经验丰富的开发人员,Focal Loss都是应对类别不平衡问题的强大工具。立即尝试将其纳入您的下一个项目,提升模型对小众类别的识别能力吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136