Focal Frequency Loss 开源项目使用教程
项目介绍
Focal Frequency Loss 是一个用于图像重建和合成的开源项目。该项目提出了一种新颖的焦点频率损失(Focal Frequency Loss),通过自适应地聚焦于难以合成的频率成分,从而提高图像重建和合成的质量。该损失函数与现有的空间损失函数互补,能够有效防止由于神经网络固有偏差导致的频率信息丢失。
Focal Frequency Loss 项目在 ICCV 2021 上被接受,并展示了其在 VAE、pix2pix 和 SPADE 等流行模型中的广泛应用和有效性。此外,该项目还展示了其在 StyleGAN2 上的潜力。
项目快速启动
安装
首先,确保你已经安装了 Anaconda。然后创建一个新的 conda 环境并激活它:
conda create -n ffl python=3.8.3 -y
conda activate ffl
接下来,克隆项目仓库并安装所需的依赖:
git clone https://github.com/EndlessSora/focal-frequency-loss.git
cd focal-frequency-loss
pip install -r VanillaAE/requirements.txt
快速使用
安装完成后,你可以通过以下代码快速使用 Focal Frequency Loss:
from focal_frequency_loss import FocalFrequencyLoss as FFL
# 初始化 FocalFrequencyLoss 类
ffl = FFL(loss_weight=1.0, alpha=1.0)
# 初始化输入张量
fake = torch.randn(4, 3, 64, 64) # 替换为预测的张量
real = torch.randn(4, 3, 64, 64) # 替换为目标张量
# 计算 Focal Frequency Loss
loss = ffl(fake, real)
应用案例和最佳实践
图像重建(Vanilla AE)
Focal Frequency Loss 可以应用于 Vanilla Autoencoder(Vanilla AE)进行图像重建。以下是一个简单的示例:
- 数据准备:下载 CelebA 数据集并解压。
bash scripts/datasets/prepare_celeba.sh [PATH_TO_IMG_ALIGN_CELEBA]
- 训练:使用提供的训练脚本进行训练。
bash scripts/VanillaAE/train/celeba_recon_w_ffl.sh
- 测试和评估:训练完成后,使用测试脚本进行测试和评估。
bash scripts/VanillaAE/test/celeba_recon_w_ffl.sh
bash scripts/VanillaAE/metrics/celeba_recon_w_ffl.sh
图像到图像翻译(pix2pix)
Focal Frequency Loss 也可以应用于 pix2pix 模型,以提高图像到图像翻译的质量。具体步骤与 Vanilla AE 类似,只需替换相应的脚本即可。
无条件图像合成(StyleGAN2)
Focal Frequency Loss 在 StyleGAN2 上的应用展示了其在高分辨率图像合成中的潜力。通过应用 Focal Frequency Loss,StyleGAN2 能够生成更高质量的图像。
典型生态项目
1. VAE(Variational Autoencoder)
VAE 是一种生成模型,广泛用于图像生成和重建任务。Focal Frequency Loss 可以显著提高 VAE 的重建质量。
2. pix2pix
pix2pix 是一种图像到图像翻译模型,Focal Frequency Loss 的应用可以提高其翻译结果的感知质量。
3. SPADE(Spatially-Adaptive Normalization)
SPADE 是一种用于图像合成的归一化技术,Focal Frequency Loss 可以进一步提升其合成图像的质量。
4. StyleGAN2
StyleGAN2 是一种用于高分辨率图像合成的生成模型,Focal Frequency Loss 的应用展示了其在 StyleGAN2 上的潜力,能够生成更高质量的图像。
通过以上模块的介绍和示例,你可以快速上手并应用 Focal Frequency Loss 项目,提升图像重建和合成的质量。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0107DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









