ASTNN项目最佳实践教程
2025-05-18 18:08:24作者:温玫谨Lighthearted
1. 项目介绍
ASTNN(A Novel Neural Source Code Representation based on Abstract Syntax Tree)是一个基于抽象语法树(AST)的神经网络源代码表示方法的开源项目。该项目旨在将代码片段编码为监督向量,用于各种源代码相关任务,如源代码分类和代码克隆检测。ASTNN通过捕获代码的语法和序列信息,为开发者在代码分析领域提供了强大的工具。
2. 项目快速启动
环境准备
首先,确保您的开发环境满足以下要求:
- Python 3.6.7(注意:此版本用于正确加载pickle文件)
- pandas 0.20.3
- gensim 3.5.0
- scikit-learn 0.19.1
- pytorch 1.0.0(论文中使用的版本为0.3.1,如果需要,可以指定v1.0.0标签克隆源代码)
- pycparser 2.18
- javalang 0.11.0
- 至少16GB的RAM
- 支持CUDA的GPU
安装依赖
通过pip安装所有依赖包:
pip install pandas==0.20.3 gensim==3.5.0 scikit-learn==0.19.1 pycparser==2.18 javalang==0.11.0
根据您的环境安装pytorch,具体步骤请参考pytorch官方文档。
运行示例
以源代码分类为例:
-
切换到
astnn
目录下:cd astnn
-
预处理数据:
python pipeline.py
-
训练和评估模型:
python train.py
3. 应用案例和最佳实践
源代码分类
使用ASTNN模型对源代码进行分类,可以通过上述快速启动步骤中提供的方法进行。
代码克隆检测
针对不同的编程语言,您需要调整pipeline.py
中的--lang
参数来生成预处理数据,然后使用train.py
进行训练。
# 生成C语言的预处理数据
python pipeline.py --lang c
# 生成Java语言的预处理数据
python pipeline.py --lang java
# 训练C语言的数据集
python train.py --lang c
# 训练Java语言的数据集
python train.py --lang java
自定义数据集
如果您想在自己的数据集上使用ASTNN,请参考项目目录中的pkl
文件格式。这些文件可以通过pandas
加载。
4. 典型生态项目
ASTNN作为源代码表示方法,可以应用于多个场景,例如:
- 代码搜索:通过将代码转换为向量表示,可以更容易地搜索和检索相似的代码段。
- 代码摘要:作为序列到序列模型中的编码器,ASTNN可以帮助生成代码的摘要。
- 代码审查:利用ASTNN提取的代码特征,可以辅助开发者在代码审查过程中发现潜在问题。
以上便是ASTNN项目的最佳实践教程,希望通过本教程,开发者能够更好地理解和运用ASTNN模型。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K