ASTNN:基于抽象语法树的神经源代码表示
2024-09-26 12:37:41作者:温艾琴Wonderful
项目介绍
ASTNN(Abstract Syntax Tree Neural Network)是一个基于抽象语法树(AST)的神经网络模型,旨在将源代码片段编码为监督向量,适用于多种与源代码相关的任务。该项目在ICSE'2019会议上发表,并已在源代码分类和代码克隆检测两个常见任务中得到了应用。ASTNN的设计不仅限于这两个任务,还可以扩展到更多与源代码相关的应用场景。
项目技术分析
ASTNN的核心技术在于利用抽象语法树(AST)来表示源代码,并通过神经网络模型将这些AST节点编码为向量。具体来说,ASTNN采用了以下技术组件:
- 抽象语法树(AST):AST是一种树状结构,能够有效地表示源代码的语法结构。通过解析源代码生成AST,ASTNN能够捕捉代码的语法信息。
- 神经网络模型:ASTNN使用了GRU(Gated Recurrent Unit)作为其神经网络模型,通过GRU对AST节点进行编码,生成代码片段的向量表示。
- 预处理与数据生成:项目提供了预处理脚本,能够将源代码转换为AST,并生成训练所需的数据。
- GPU加速:由于神经网络训练需要大量的计算资源,ASTNN推荐使用支持CUDA的GPU进行加速。
项目及技术应用场景
ASTNN的应用场景非常广泛,主要包括以下几个方面:
- 源代码分类:ASTNN可以将源代码片段编码为向量,适用于代码分类任务,如代码功能分类、代码风格分类等。
- 代码克隆检测:通过比较代码片段的向量表示,ASTNN可以高效地检测代码克隆,识别相似或重复的代码片段。
- 无监督向量表示:ASTNN还可以生成无监督的代码向量表示,适用于需要代码语义相似度的任务。
- 序列到序列模型增强:ASTNN可以作为编码器,增强序列到序列模型,如代码摘要生成、代码翻译等任务。
项目特点
ASTNN具有以下几个显著特点:
- 基于AST的高效表示:通过抽象语法树,ASTNN能够捕捉源代码的语法结构,生成高效的代码向量表示。
- 灵活的应用场景:ASTNN不仅限于源代码分类和代码克隆检测,还可以扩展到更多与源代码相关的任务。
- 易于使用:项目提供了详细的安装和使用说明,用户可以轻松地将ASTNN应用到自己的数据集上。
- 高性能计算支持:ASTNN推荐使用GPU进行加速,能够显著提高训练效率。
结语
ASTNN作为一个基于抽象语法树的神经网络模型,为源代码的表示和处理提供了新的思路。无论你是研究者还是开发者,ASTNN都能为你提供强大的工具,帮助你更好地理解和处理源代码。如果你对源代码分析、代码克隆检测或其他相关任务感兴趣,不妨试试ASTNN,它可能会给你带来意想不到的惊喜!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K