ASTNN 项目使用教程
1. 项目介绍
ASTNN(Abstract Syntax Tree Neural Network)是一个基于抽象语法树(AST)的神经网络模型,旨在将代码片段编码为监督向量,用于各种与源代码相关的任务。该项目在ICSE'2019上发表的论文《A Novel Neural Source Code Representation based on Abstract Syntax Tree》中首次提出。ASTNN主要应用于源代码分类和代码克隆检测,并有望在更多任务中发挥作用。
2. 项目快速启动
2.1 环境准备
确保你的环境满足以下要求:
- Python 3.6 或 3.7
- pandas 0.20.3
- gensim 3.5.0
- scikit-learn 0.19.1
- pytorch 1.0.0(建议根据你的环境从PyTorch官网安装)
- pycparser 2.18
- javalang 0.11.0
- 至少16GB RAM
- 支持CUDA的GPU(推荐)
2.2 安装依赖
使用pip安装所有依赖包:
pip install pandas==0.20.3 gensim==3.5.0 scikit-learn==0.19.1 pycparser==2.18 javalang==0.11.0
2.3 下载项目
从GitHub克隆项目:
git clone https://github.com/zhangj1994/astnn.git
cd astnn
2.4 运行示例
2.4.1 源代码分类
生成预处理数据:
python pipeline.py
训练和评估模型:
python train.py
2.4.2 代码克隆检测
生成预处理数据(C语言):
cd clone
python pipeline.py --lang c
训练模型(C语言):
python train.py --lang c
生成预处理数据(Java语言):
python pipeline.py --lang java
训练模型(Java语言):
python train.py --lang java
3. 应用案例和最佳实践
3.1 源代码分类
ASTNN在源代码分类任务中表现出色,能够将代码片段编码为向量,用于后续的分类任务。例如,可以用于检测代码中的安全漏洞或识别代码风格。
3.2 代码克隆检测
ASTNN在代码克隆检测中也有广泛应用,能够识别出相似或相同的代码片段,有助于代码重构和维护。
3.3 自定义数据集
如果你有自己的数据集,可以参考项目中的pkl文件格式,使用pandas加载和处理数据。例如,在代码克隆检测任务中,你需要替换/clone/data/java
目录下的bcb_pair_ids.pkl
和bcb_funcs_all.tsv
文件。
4. 典型生态项目
4.1 PyTorch
ASTNN基于PyTorch框架开发,PyTorch提供了强大的深度学习工具和库,支持GPU加速,非常适合处理大规模数据和复杂模型。
4.2 pandas
pandas用于数据处理和分析,ASTNN使用pandas加载和处理数据文件,确保数据的准确性和高效性。
4.3 gensim
gensim用于生成词向量,ASTNN利用gensim生成代码片段的向量表示,进一步提升模型的性能。
4.4 scikit-learn
scikit-learn提供了丰富的机器学习算法和工具,ASTNN在模型评估和调优过程中使用了scikit-learn的工具。
通过以上步骤,你可以快速启动并使用ASTNN项目,进行源代码分类和代码克隆检测等任务。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04