ASTNN 项目使用教程
1. 项目介绍
ASTNN(Abstract Syntax Tree Neural Network)是一个基于抽象语法树(AST)的神经网络模型,旨在将代码片段编码为监督向量,用于各种与源代码相关的任务。该项目在ICSE'2019上发表的论文《A Novel Neural Source Code Representation based on Abstract Syntax Tree》中首次提出。ASTNN主要应用于源代码分类和代码克隆检测,并有望在更多任务中发挥作用。
2. 项目快速启动
2.1 环境准备
确保你的环境满足以下要求:
- Python 3.6 或 3.7
- pandas 0.20.3
- gensim 3.5.0
- scikit-learn 0.19.1
- pytorch 1.0.0(建议根据你的环境从PyTorch官网安装)
- pycparser 2.18
- javalang 0.11.0
- 至少16GB RAM
- 支持CUDA的GPU(推荐)
2.2 安装依赖
使用pip安装所有依赖包:
pip install pandas==0.20.3 gensim==3.5.0 scikit-learn==0.19.1 pycparser==2.18 javalang==0.11.0
2.3 下载项目
从GitHub克隆项目:
git clone https://github.com/zhangj1994/astnn.git
cd astnn
2.4 运行示例
2.4.1 源代码分类
生成预处理数据:
python pipeline.py
训练和评估模型:
python train.py
2.4.2 代码克隆检测
生成预处理数据(C语言):
cd clone
python pipeline.py --lang c
训练模型(C语言):
python train.py --lang c
生成预处理数据(Java语言):
python pipeline.py --lang java
训练模型(Java语言):
python train.py --lang java
3. 应用案例和最佳实践
3.1 源代码分类
ASTNN在源代码分类任务中表现出色,能够将代码片段编码为向量,用于后续的分类任务。例如,可以用于检测代码中的安全漏洞或识别代码风格。
3.2 代码克隆检测
ASTNN在代码克隆检测中也有广泛应用,能够识别出相似或相同的代码片段,有助于代码重构和维护。
3.3 自定义数据集
如果你有自己的数据集,可以参考项目中的pkl文件格式,使用pandas加载和处理数据。例如,在代码克隆检测任务中,你需要替换/clone/data/java
目录下的bcb_pair_ids.pkl
和bcb_funcs_all.tsv
文件。
4. 典型生态项目
4.1 PyTorch
ASTNN基于PyTorch框架开发,PyTorch提供了强大的深度学习工具和库,支持GPU加速,非常适合处理大规模数据和复杂模型。
4.2 pandas
pandas用于数据处理和分析,ASTNN使用pandas加载和处理数据文件,确保数据的准确性和高效性。
4.3 gensim
gensim用于生成词向量,ASTNN利用gensim生成代码片段的向量表示,进一步提升模型的性能。
4.4 scikit-learn
scikit-learn提供了丰富的机器学习算法和工具,ASTNN在模型评估和调优过程中使用了scikit-learn的工具。
通过以上步骤,你可以快速启动并使用ASTNN项目,进行源代码分类和代码克隆检测等任务。
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09