Autoware城市数据集采集与处理技术解析
2025-05-24 20:56:18作者:盛欣凯Ernestine
数据集背景与目标
Autoware自动驾驶系统开发过程中,需要针对特殊城市环境(如隧道、桥梁等)进行算法验证和性能测试。为此,项目团队专门规划并执行了一次高质量的城市环境数据采集工作,旨在为LOAM(Lidar Odometry and Mapping)定位算法等核心功能模块提供可靠的测试数据。
传感器配置方案
本次数据采集采用了专业级的传感器组合:
- 激光雷达:Hesai Pandar XT32,32线机械式激光雷达,采用Strongest回波模式采集点云数据
- 定位定向系统:Applanix POS LVX GNSS/INS组合导航系统,提供高精度位置和姿态信息
传感器之间通过PPS硬件同步信号和GPRMC时间信息报文实现精确时间同步,确保数据的时间一致性。系统安装时特别注意了传感器之间的空间关系标定,为后续数据处理奠定了基础。
数据采集路线规划
采集路线经过精心设计,覆盖了典型城市驾驶场景中的多种挑战性环境:
- 长距离隧道场景(测试GNSS信号缺失情况下的定位性能)
- 大型跨海桥梁(评估多路径效应和高空环境对定位的影响)
- 复杂城市道路(包含多种交通要素和动态障碍物)
路线总长约15公里,包含了不同速度段(30-80km/h)的驾驶数据,能够全面测试自动驾驶系统在各种工况下的表现。
数据处理流程
原始数据格式
采集获得的原始数据包括:
- 激光雷达点云数据(PCAP格式)
- GNSS/INS原始观测数据(T04格式)
- 时间同步信息(GPRMC报文)
数据转换与配准
数据处理团队开发了专门的处理流程:
- 时间对齐:利用PPS硬件同步和GPRMC时间戳确保传感器数据时间一致性
- 坐标转换:将GNSS/INS的NED坐标系数据转换为ROS标准坐标系
- 传感器标定:应用预先标定的外参矩阵(包含空间位移和旋转参数)
点云地图生成
使用LOAM算法框架生成高精度点云地图,关键技术点包括:
- 点云特征提取(边缘点和平面点分离)
- 基于GNSS/INS的初始位姿估计
- 点云配准与优化
- 动态障碍物滤波(后续计划实现)
数据集技术规格
坐标系定义
- 车辆坐标系:X轴向前,Y轴向右,Z轴向下
- 激光雷达坐标系:X轴向后,Y轴向右,Z轴向上
- GNSS/INS坐标系:采用NED(北-东-地)坐标系
传感器标定参数
提供了精确的传感器间标定参数,包括:
- 空间位移(X/Y/Z三轴偏移)
- 旋转角度(横滚/俯仰/偏航)
- 时间延迟补偿
数据产品
最终生成的数据产品包括:
- 完整点云地图(0.2米体素降采样)
- 特征点云(边缘点和平面点分离)
- ROS2 bag格式的原始传感器数据
- 时间对齐的原始数据包(PCAP+TXT)
技术挑战与解决方案
在数据采集和处理过程中,团队遇到了若干技术挑战:
-
时间同步问题:初期数据因时间不同步导致LOAM建图失败。解决方案是加强PPS硬件同步,并增加GPRMC软件时间戳校验。
-
动态障碍物干扰:城市环境中大量动态车辆导致点云地图出现"鬼影"。计划后续通过时序分析和目标跟踪技术进行滤除。
-
隧道场景定位:在GNSS拒止环境下,依赖激光雷达里程计的累积误差控制。通过改进闭环检测算法提高建图一致性。
数据集应用价值
该数据集具有以下应用价值:
- 算法开发:可用于LOAM等激光定位算法的开发与测试
- 系统验证:验证自动驾驶系统在复杂城市环境中的可靠性
- 性能评估:评估不同传感器配置在极端条件下的表现
- 基准测试:为不同算法提供统一的测试基准
未来改进方向
基于当前数据集,团队规划了以下改进方向:
- 实现动态障碍物的自动滤除,提高点云地图质量
- 增加传感器多样性(如摄像头、毫米波雷达等)
- 提供更多元化的场景数据(如雨天、夜间等特殊条件)
- 开发标准化的数据处理和评估工具链
该数据集的建立为Autoware生态系统提供了重要的测试资源,将有效促进自动驾驶技术在复杂城市环境中的应用发展。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110