Autoware城市数据集采集与处理技术解析
2025-05-24 07:42:12作者:盛欣凯Ernestine
数据集背景与目标
Autoware自动驾驶系统开发过程中,需要针对特殊城市环境(如隧道、桥梁等)进行算法验证和性能测试。为此,项目团队专门规划并执行了一次高质量的城市环境数据采集工作,旨在为LOAM(Lidar Odometry and Mapping)定位算法等核心功能模块提供可靠的测试数据。
传感器配置方案
本次数据采集采用了专业级的传感器组合:
- 激光雷达:Hesai Pandar XT32,32线机械式激光雷达,采用Strongest回波模式采集点云数据
- 定位定向系统:Applanix POS LVX GNSS/INS组合导航系统,提供高精度位置和姿态信息
传感器之间通过PPS硬件同步信号和GPRMC时间信息报文实现精确时间同步,确保数据的时间一致性。系统安装时特别注意了传感器之间的空间关系标定,为后续数据处理奠定了基础。
数据采集路线规划
采集路线经过精心设计,覆盖了典型城市驾驶场景中的多种挑战性环境:
- 长距离隧道场景(测试GNSS信号缺失情况下的定位性能)
- 大型跨海桥梁(评估多路径效应和高空环境对定位的影响)
- 复杂城市道路(包含多种交通要素和动态障碍物)
路线总长约15公里,包含了不同速度段(30-80km/h)的驾驶数据,能够全面测试自动驾驶系统在各种工况下的表现。
数据处理流程
原始数据格式
采集获得的原始数据包括:
- 激光雷达点云数据(PCAP格式)
- GNSS/INS原始观测数据(T04格式)
- 时间同步信息(GPRMC报文)
数据转换与配准
数据处理团队开发了专门的处理流程:
- 时间对齐:利用PPS硬件同步和GPRMC时间戳确保传感器数据时间一致性
- 坐标转换:将GNSS/INS的NED坐标系数据转换为ROS标准坐标系
- 传感器标定:应用预先标定的外参矩阵(包含空间位移和旋转参数)
点云地图生成
使用LOAM算法框架生成高精度点云地图,关键技术点包括:
- 点云特征提取(边缘点和平面点分离)
- 基于GNSS/INS的初始位姿估计
- 点云配准与优化
- 动态障碍物滤波(后续计划实现)
数据集技术规格
坐标系定义
- 车辆坐标系:X轴向前,Y轴向右,Z轴向下
- 激光雷达坐标系:X轴向后,Y轴向右,Z轴向上
- GNSS/INS坐标系:采用NED(北-东-地)坐标系
传感器标定参数
提供了精确的传感器间标定参数,包括:
- 空间位移(X/Y/Z三轴偏移)
- 旋转角度(横滚/俯仰/偏航)
- 时间延迟补偿
数据产品
最终生成的数据产品包括:
- 完整点云地图(0.2米体素降采样)
- 特征点云(边缘点和平面点分离)
- ROS2 bag格式的原始传感器数据
- 时间对齐的原始数据包(PCAP+TXT)
技术挑战与解决方案
在数据采集和处理过程中,团队遇到了若干技术挑战:
-
时间同步问题:初期数据因时间不同步导致LOAM建图失败。解决方案是加强PPS硬件同步,并增加GPRMC软件时间戳校验。
-
动态障碍物干扰:城市环境中大量动态车辆导致点云地图出现"鬼影"。计划后续通过时序分析和目标跟踪技术进行滤除。
-
隧道场景定位:在GNSS拒止环境下,依赖激光雷达里程计的累积误差控制。通过改进闭环检测算法提高建图一致性。
数据集应用价值
该数据集具有以下应用价值:
- 算法开发:可用于LOAM等激光定位算法的开发与测试
- 系统验证:验证自动驾驶系统在复杂城市环境中的可靠性
- 性能评估:评估不同传感器配置在极端条件下的表现
- 基准测试:为不同算法提供统一的测试基准
未来改进方向
基于当前数据集,团队规划了以下改进方向:
- 实现动态障碍物的自动滤除,提高点云地图质量
- 增加传感器多样性(如摄像头、毫米波雷达等)
- 提供更多元化的场景数据(如雨天、夜间等特殊条件)
- 开发标准化的数据处理和评估工具链
该数据集的建立为Autoware生态系统提供了重要的测试资源,将有效促进自动驾驶技术在复杂城市环境中的应用发展。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249