Autoware城市数据集采集与处理技术解析
2025-05-24 07:42:12作者:盛欣凯Ernestine
数据集背景与目标
Autoware自动驾驶系统开发过程中,需要针对特殊城市环境(如隧道、桥梁等)进行算法验证和性能测试。为此,项目团队专门规划并执行了一次高质量的城市环境数据采集工作,旨在为LOAM(Lidar Odometry and Mapping)定位算法等核心功能模块提供可靠的测试数据。
传感器配置方案
本次数据采集采用了专业级的传感器组合:
- 激光雷达:Hesai Pandar XT32,32线机械式激光雷达,采用Strongest回波模式采集点云数据
- 定位定向系统:Applanix POS LVX GNSS/INS组合导航系统,提供高精度位置和姿态信息
传感器之间通过PPS硬件同步信号和GPRMC时间信息报文实现精确时间同步,确保数据的时间一致性。系统安装时特别注意了传感器之间的空间关系标定,为后续数据处理奠定了基础。
数据采集路线规划
采集路线经过精心设计,覆盖了典型城市驾驶场景中的多种挑战性环境:
- 长距离隧道场景(测试GNSS信号缺失情况下的定位性能)
- 大型跨海桥梁(评估多路径效应和高空环境对定位的影响)
- 复杂城市道路(包含多种交通要素和动态障碍物)
路线总长约15公里,包含了不同速度段(30-80km/h)的驾驶数据,能够全面测试自动驾驶系统在各种工况下的表现。
数据处理流程
原始数据格式
采集获得的原始数据包括:
- 激光雷达点云数据(PCAP格式)
- GNSS/INS原始观测数据(T04格式)
- 时间同步信息(GPRMC报文)
数据转换与配准
数据处理团队开发了专门的处理流程:
- 时间对齐:利用PPS硬件同步和GPRMC时间戳确保传感器数据时间一致性
- 坐标转换:将GNSS/INS的NED坐标系数据转换为ROS标准坐标系
- 传感器标定:应用预先标定的外参矩阵(包含空间位移和旋转参数)
点云地图生成
使用LOAM算法框架生成高精度点云地图,关键技术点包括:
- 点云特征提取(边缘点和平面点分离)
- 基于GNSS/INS的初始位姿估计
- 点云配准与优化
- 动态障碍物滤波(后续计划实现)
数据集技术规格
坐标系定义
- 车辆坐标系:X轴向前,Y轴向右,Z轴向下
- 激光雷达坐标系:X轴向后,Y轴向右,Z轴向上
- GNSS/INS坐标系:采用NED(北-东-地)坐标系
传感器标定参数
提供了精确的传感器间标定参数,包括:
- 空间位移(X/Y/Z三轴偏移)
- 旋转角度(横滚/俯仰/偏航)
- 时间延迟补偿
数据产品
最终生成的数据产品包括:
- 完整点云地图(0.2米体素降采样)
- 特征点云(边缘点和平面点分离)
- ROS2 bag格式的原始传感器数据
- 时间对齐的原始数据包(PCAP+TXT)
技术挑战与解决方案
在数据采集和处理过程中,团队遇到了若干技术挑战:
-
时间同步问题:初期数据因时间不同步导致LOAM建图失败。解决方案是加强PPS硬件同步,并增加GPRMC软件时间戳校验。
-
动态障碍物干扰:城市环境中大量动态车辆导致点云地图出现"鬼影"。计划后续通过时序分析和目标跟踪技术进行滤除。
-
隧道场景定位:在GNSS拒止环境下,依赖激光雷达里程计的累积误差控制。通过改进闭环检测算法提高建图一致性。
数据集应用价值
该数据集具有以下应用价值:
- 算法开发:可用于LOAM等激光定位算法的开发与测试
- 系统验证:验证自动驾驶系统在复杂城市环境中的可靠性
- 性能评估:评估不同传感器配置在极端条件下的表现
- 基准测试:为不同算法提供统一的测试基准
未来改进方向
基于当前数据集,团队规划了以下改进方向:
- 实现动态障碍物的自动滤除,提高点云地图质量
- 增加传感器多样性(如摄像头、毫米波雷达等)
- 提供更多元化的场景数据(如雨天、夜间等特殊条件)
- 开发标准化的数据处理和评估工具链
该数据集的建立为Autoware生态系统提供了重要的测试资源,将有效促进自动驾驶技术在复杂城市环境中的应用发展。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882