CVAT升级后图像访问与模型运行问题的分析与解决
问题背景
在将CVAT(Computer Vision Annotation Tool)从2.21.2版本升级到2.31.0版本后,用户遇到了两个主要问题:
- 系统频繁显示"Could not fetch requests from the server"错误提示
- 无法运行Nuclio提供的模型功能,尽管这些模型在界面中可见
此外,还发现了一个关联现象:升级前创建的任务中的图像无法访问,而升级后新创建的任务则没有这个问题。
问题现象分析
服务器请求失败错误
用户登录系统或执行任务操作(如创建、删除任务)时,前端会弹出错误提示:"Could not fetch requests from the server",并伴随500服务器错误。虽然这个错误不影响基本功能使用,但给用户带来了不安全感。
模型运行问题
Nuclio提供的模型在CVAT界面中可见但无法运行,这与升级前的行为不同。在2.21.2版本中,这些模型可以正常运行。
图像访问问题
升级后,系统无法访问升级前创建的任务中的图像,但可以正常访问升级后新创建任务的图像。这个问题在修复后曾短暂消失,但几天后又重新出现。
问题排查过程
初步分析
通过检查服务器日志,发现了大量"WARNING django.request: Too Many Requests"警告信息。这表明系统存在请求积压的情况,可能是导致模型无法运行的根本原因。
深入调查
进一步检查发现,问题与CVAT的chunk处理机制有关。在2.31.0版本中,CVAT对图像数据的处理方式有所改变,采用了新的chunk机制。这导致旧版本创建的任务与新版本的chunk处理方式不兼容。
关键发现
检查cvat_worker_chunks容器的日志后,确认了chunk处理服务存在问题。这解释了为什么旧任务的图像无法访问,同时也导致了请求积压,进而影响了模型服务的正常运行。
解决方案
解决图像访问问题
- 清理Redis缓存数据:执行
docker exec -it cvat_redis_inmem redis-cli flushall
命令,清除可能存在的无效缓存 - 修复chunk处理服务:根据cvat_worker_chunks容器的日志信息,调整相关配置,确保服务正常运行
解决模型运行问题
随着chunk处理问题的解决,系统请求积压问题也随之消失。Nuclio模型服务不再受到过多请求的干扰,恢复了正常运行能力。
问题根源总结
本次升级后出现的问题主要源于:
- 版本间chunk处理机制的差异导致旧任务图像访问异常
- 图像访问问题引发请求积压,进而影响了模型服务的可用性
- Redis缓存中可能存在与新版本不兼容的数据
经验教训
- 在升级CVAT前,应充分了解版本间的重大变更,特别是数据存储和处理机制的变化
- 升级后应及时检查所有核心服务的运行状态,包括chunk处理服务
- 对于跨大版本的升级,建议在测试环境充分验证后再应用到生产环境
- 定期清理Redis缓存可以避免一些潜在的兼容性问题
后续建议
- 建立完善的升级检查清单,确保所有依赖服务都正确配置
- 考虑实现数据迁移脚本,将旧任务的数据转换为新版本兼容的格式
- 监控系统请求队列长度,及时发现并处理请求积压问题
通过本次问题的解决,我们不仅修复了当前系统的问题,也为未来类似升级积累了宝贵经验。CVAT作为功能强大的计算机视觉标注工具,其版本迭代带来的新特性值得期待,但同时也需要谨慎处理升级过程中的兼容性问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









