CVAT升级后图像访问与模型运行问题的分析与解决
问题背景
在将CVAT(Computer Vision Annotation Tool)从2.21.2版本升级到2.31.0版本后,用户遇到了两个主要问题:
- 系统频繁显示"Could not fetch requests from the server"错误提示
- 无法运行Nuclio提供的模型功能,尽管这些模型在界面中可见
此外,还发现了一个关联现象:升级前创建的任务中的图像无法访问,而升级后新创建的任务则没有这个问题。
问题现象分析
服务器请求失败错误
用户登录系统或执行任务操作(如创建、删除任务)时,前端会弹出错误提示:"Could not fetch requests from the server",并伴随500服务器错误。虽然这个错误不影响基本功能使用,但给用户带来了不安全感。
模型运行问题
Nuclio提供的模型在CVAT界面中可见但无法运行,这与升级前的行为不同。在2.21.2版本中,这些模型可以正常运行。
图像访问问题
升级后,系统无法访问升级前创建的任务中的图像,但可以正常访问升级后新创建任务的图像。这个问题在修复后曾短暂消失,但几天后又重新出现。
问题排查过程
初步分析
通过检查服务器日志,发现了大量"WARNING django.request: Too Many Requests"警告信息。这表明系统存在请求积压的情况,可能是导致模型无法运行的根本原因。
深入调查
进一步检查发现,问题与CVAT的chunk处理机制有关。在2.31.0版本中,CVAT对图像数据的处理方式有所改变,采用了新的chunk机制。这导致旧版本创建的任务与新版本的chunk处理方式不兼容。
关键发现
检查cvat_worker_chunks容器的日志后,确认了chunk处理服务存在问题。这解释了为什么旧任务的图像无法访问,同时也导致了请求积压,进而影响了模型服务的正常运行。
解决方案
解决图像访问问题
- 清理Redis缓存数据:执行
docker exec -it cvat_redis_inmem redis-cli flushall
命令,清除可能存在的无效缓存 - 修复chunk处理服务:根据cvat_worker_chunks容器的日志信息,调整相关配置,确保服务正常运行
解决模型运行问题
随着chunk处理问题的解决,系统请求积压问题也随之消失。Nuclio模型服务不再受到过多请求的干扰,恢复了正常运行能力。
问题根源总结
本次升级后出现的问题主要源于:
- 版本间chunk处理机制的差异导致旧任务图像访问异常
- 图像访问问题引发请求积压,进而影响了模型服务的可用性
- Redis缓存中可能存在与新版本不兼容的数据
经验教训
- 在升级CVAT前,应充分了解版本间的重大变更,特别是数据存储和处理机制的变化
- 升级后应及时检查所有核心服务的运行状态,包括chunk处理服务
- 对于跨大版本的升级,建议在测试环境充分验证后再应用到生产环境
- 定期清理Redis缓存可以避免一些潜在的兼容性问题
后续建议
- 建立完善的升级检查清单,确保所有依赖服务都正确配置
- 考虑实现数据迁移脚本,将旧任务的数据转换为新版本兼容的格式
- 监控系统请求队列长度,及时发现并处理请求积压问题
通过本次问题的解决,我们不仅修复了当前系统的问题,也为未来类似升级积累了宝贵经验。CVAT作为功能强大的计算机视觉标注工具,其版本迭代带来的新特性值得期待,但同时也需要谨慎处理升级过程中的兼容性问题。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0295ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++061Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









