MMPose 自定义数据集训练中的关键点评估问题解析
2025-06-03 10:32:46作者:蔡怀权
在使用 MMPose 进行自定义数据集训练时,开发者可能会遇到一个常见的评估错误:"ValueError: operands could not be broadcast together with shapes (7,) (0,)"。这个问题通常出现在验证阶段,特别是在使用 CocoMetric 进行评估时。
问题根源分析
该错误的根本原因在于数据集配置中的 sigmas 参数设置不当。在 MMPose 的评估流程中,sigmas 参数用于计算 OKS (Object Keypoint Similarity) 分数,这是一个衡量关键点检测准确度的重要指标。
当 sigmas 被设置为空列表 [] 时,系统无法正确计算关键点之间的相似度,导致广播操作失败,从而抛出形状不匹配的错误。
解决方案
1. 正确设置 sigmas 参数
sigmas 应该是一个包含每个关键点标准差的列表,其长度必须与数据集中的关键点数量一致。例如,对于包含7个关键点的数据集:
dataset_info = dict(
dataset_name='CocoCustom',
keypoint_info={
0: dict(name='kp_1', id=1, color=[51, 153, 255], type='', swap=''),
# ... 其他关键点定义
},
skeleton_info={},
joint_weights=[],
sigmas=[0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05] # 7个关键点对应7个sigma值
)
2. 理解 sigma 的含义
每个关键点的 sigma 值代表了该关键点的标注不确定性,通常取值范围在0.01到0.1之间:
- 较小的 sigma 值表示关键点位置更精确(如眼睛中心)
- 较大的 sigma 值表示关键点位置可能有一定变化范围(如肩膀位置)
对于大多数应用场景,可以暂时使用相同的中间值(如0.05),待模型初步训练后再根据实际表现调整。
3. 其他相关参数配置
除了 sigmas 外,完整的评估配置还应考虑:
val_evaluator = dict(
type='CocoMetric',
ann_file='path/to/annotations.json',
nms_mode='none',
score_mode='keypoint', # 或'bbox'取决于评估方式
keypoint_metric=['AP', 'AR'], # 选择需要的评估指标
use_area=False # 是否使用标注中的area信息
)
最佳实践建议
- 数据集完整性检查:在训练前确保所有关键点都有对应的 sigma 值
- 参数调优:根据关键点类型调整不同的 sigma 值,可见性高的关键点使用较小值
- 评估指标选择:根据实际需求选择合适的评估指标组合
- 逐步验证:先在小批量数据上验证配置正确性,再扩展到整个数据集
总结
在 MMPose 中使用自定义数据集时,正确配置评估参数特别是 sigmas 值至关重要。这不仅关系到模型评估的准确性,也直接影响训练过程中的损失计算。通过合理设置这些参数,开发者可以确保模型训练和评估流程顺利进行,从而获得更准确的关键点检测模型。
对于初学者,建议参考 MMPose 官方文档中关于标准数据集的配置示例,逐步理解各参数的含义和作用,再应用到自己的项目中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
137
169
React Native鸿蒙化仓库
JavaScript
235
309
暂无简介
Dart
598
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
631
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
688
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
仓颉编程语言测试用例。
Cangjie
36
688