MMPose项目中修改COCO数据集关键点个数时的解决方案
问题背景
在使用MMPose进行人体关键点检测时,研究人员有时需要针对特定任务修改COCO数据集中的关键点数量。本文以COCO WholeBody Face数据集为例,探讨如何将原本68个面部关键点修改为17个关键点,并解决在此过程中遇到的技术问题。
关键问题分析
当尝试减少COCO WholeBody Face数据集的关键点数量时,主要会遇到以下两个技术难点:
-
维度不匹配错误:在训练过程中出现"stack expects each tensor to be equal size"错误,提示热图维度不一致(部分为17x64x64,部分为68x64x64)。
-
关键点索引问题:原始数据集的关键点ID与自定义关键点ID之间的映射关系需要正确处理。
解决方案详解
1. 数据集类修改
首先需要创建一个新的数据集类CocoWholeBodyFace17PointDataset
,继承自基础数据集类。这个类需要正确指定只包含17个关键点的元信息:
class CocoWholeBodyFace17PointDataset(BaseCocoStyleDataset):
METAINFO: dict = dict(
from_file='configs/_base_/datasets/coco_wholebody_face_17point.py')
2. 元信息配置文件
在coco_wholebody_face_17point.py
配置文件中,需要正确定义17个关键点的信息。特别注意以下几点:
- 每个关键点的ID必须与其在字典中的键一致
- 需要正确定义关键点之间的对称关系(swap属性)
- 需要设置正确的关节权重和sigmas值
keypoint_info={
30: dict(name='face-30', id=30, color=[255, 0, 0], type='', swap=''),
36: dict(name='face-36', id=36, color=[255, 0, 0], type='', swap='face-45'),
# 其他关键点定义...
57: dict(name='face-57', id=57, color=[255, 0, 0], type='', swap=''),
},
skeleton_info={},
joint_weights=[1.] * 17,
sigmas=[
0.007, 0.017, 0.011, 0.009, 0.011,
0.009, 0.007, 0.013, 0.008, 0.011,
0.012, 0.010, 0.034, 0.008, 0.008,
0.010, 0.009]
3. 模型头部调整
在模型配置文件中,需要将HeatmapHead的输出通道数改为17,以匹配新的关键点数量:
head=dict(
type='HeatmapHead',
in_channels=1280,
out_channels=17, # 修改为17个关键点
loss=dict(type='KeypointMSELoss', use_target_weight=True),
decoder=codec),
4. 关键实现细节
-
关键点提取逻辑:在自定义数据集类中,需要重写关键点提取逻辑,确保只从原始数据中提取所需的17个关键点。
-
评估指标调整:需要修改评估过程中使用的关键点索引,特别是对于需要计算距离的关键点对(如左右眼外眼角)。
-
数据增强处理:对于随机翻转等数据增强操作,需要确保关键点的对称关系正确映射到新的关键点集合。
常见问题排查
如果在实施上述修改后仍然遇到问题,可以检查以下几个方面:
- 确保数据集注册正确,新的数据集类被正确导入和使用
- 检查关键点ID是否连续且无冲突
- 验证数据加载过程中是否所有样本都被正确处理
- 确认评估指标计算使用的关键点索引是否正确
总结
在MMPose项目中修改COCO数据集的关键点数量是一个需要谨慎处理的过程。通过创建自定义数据集类、正确定义元信息、调整模型头部输出以及正确处理评估逻辑,可以成功实现对数据集关键点数量的修改。本文提供的解决方案不仅适用于面部关键点检测,其思路也可以推广到其他关键点检测任务的定制化需求中。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









