MMPose项目中修改COCO数据集关键点个数时的解决方案
问题背景
在使用MMPose进行人体关键点检测时,研究人员有时需要针对特定任务修改COCO数据集中的关键点数量。本文以COCO WholeBody Face数据集为例,探讨如何将原本68个面部关键点修改为17个关键点,并解决在此过程中遇到的技术问题。
关键问题分析
当尝试减少COCO WholeBody Face数据集的关键点数量时,主要会遇到以下两个技术难点:
-
维度不匹配错误:在训练过程中出现"stack expects each tensor to be equal size"错误,提示热图维度不一致(部分为17x64x64,部分为68x64x64)。
-
关键点索引问题:原始数据集的关键点ID与自定义关键点ID之间的映射关系需要正确处理。
解决方案详解
1. 数据集类修改
首先需要创建一个新的数据集类CocoWholeBodyFace17PointDataset,继承自基础数据集类。这个类需要正确指定只包含17个关键点的元信息:
class CocoWholeBodyFace17PointDataset(BaseCocoStyleDataset):
METAINFO: dict = dict(
from_file='configs/_base_/datasets/coco_wholebody_face_17point.py')
2. 元信息配置文件
在coco_wholebody_face_17point.py配置文件中,需要正确定义17个关键点的信息。特别注意以下几点:
- 每个关键点的ID必须与其在字典中的键一致
- 需要正确定义关键点之间的对称关系(swap属性)
- 需要设置正确的关节权重和sigmas值
keypoint_info={
30: dict(name='face-30', id=30, color=[255, 0, 0], type='', swap=''),
36: dict(name='face-36', id=36, color=[255, 0, 0], type='', swap='face-45'),
# 其他关键点定义...
57: dict(name='face-57', id=57, color=[255, 0, 0], type='', swap=''),
},
skeleton_info={},
joint_weights=[1.] * 17,
sigmas=[
0.007, 0.017, 0.011, 0.009, 0.011,
0.009, 0.007, 0.013, 0.008, 0.011,
0.012, 0.010, 0.034, 0.008, 0.008,
0.010, 0.009]
3. 模型头部调整
在模型配置文件中,需要将HeatmapHead的输出通道数改为17,以匹配新的关键点数量:
head=dict(
type='HeatmapHead',
in_channels=1280,
out_channels=17, # 修改为17个关键点
loss=dict(type='KeypointMSELoss', use_target_weight=True),
decoder=codec),
4. 关键实现细节
-
关键点提取逻辑:在自定义数据集类中,需要重写关键点提取逻辑,确保只从原始数据中提取所需的17个关键点。
-
评估指标调整:需要修改评估过程中使用的关键点索引,特别是对于需要计算距离的关键点对(如左右眼外眼角)。
-
数据增强处理:对于随机翻转等数据增强操作,需要确保关键点的对称关系正确映射到新的关键点集合。
常见问题排查
如果在实施上述修改后仍然遇到问题,可以检查以下几个方面:
- 确保数据集注册正确,新的数据集类被正确导入和使用
- 检查关键点ID是否连续且无冲突
- 验证数据加载过程中是否所有样本都被正确处理
- 确认评估指标计算使用的关键点索引是否正确
总结
在MMPose项目中修改COCO数据集的关键点数量是一个需要谨慎处理的过程。通过创建自定义数据集类、正确定义元信息、调整模型头部输出以及正确处理评估逻辑,可以成功实现对数据集关键点数量的修改。本文提供的解决方案不仅适用于面部关键点检测,其思路也可以推广到其他关键点检测任务的定制化需求中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00