在MMPose中为RTMO模型适配新数据集的技术指南
2025-06-03 16:45:10作者:侯霆垣
背景介绍
MMPose是一个开源的姿态估计工具箱,RTMO是其中一种实时多人姿态估计算法。当我们需要将RTMO模型应用于新的关键点数据集(如Halpe26+COCO-Wholebody的26关键点组合)时,需要进行一系列的适配工作。
数据集适配步骤
1. 添加数据集和转换器
首先需要为新数据集创建相应的配置。可以参考RTMPose-body8的实现方式:
- 在数据集中添加Halpe26+COCO-Wholebody的定义
- 创建对应的数据转换器(converter)
- 确保数据加载流程能够正确处理新的关键点格式
2. 修改模型头部
由于关键点数量从标准的17个变为26个,必须调整模型头部的num_keypoints
参数:
# 在模型配置中修改关键点数量
model = dict(
type='RTMO',
...
head=dict(
type='RTMOHead',
num_keypoints=26, # 修改为新的关键点数量
...
)
)
评估指标配置
评估指标的配置是关键且容易出错的部分。对于26关键点的评估,需要注意以下几点:
正确选择评估器类型
对于COCO-Wholebody这类扩展数据集,应该使用CocoWholeBodyMetric
而不是标准的CocoMetric
:
val_evaluator = dict(
type='CocoWholeBodyMetric',
ann_file='path/to/coco_wholebody_val_v1.0.json',
nms_mode='none',
score_mode='bbox',
gt_converter=dict(
num_keypoints=26,
mapping=coco_halpe26 # 自定义的关键点映射关系
)
)
元数据文件的选择
常见的错误是使用了错误的元数据文件。对于26关键点评估:
- 必须使用COCO-Wholebody的元数据文件
- 不能使用标准COCO的元数据文件
- 确保元数据文件中的关键点定义与新数据集匹配
其他评估指标
除了标准的关键点检测指标外,还可以考虑:
- mAP(平均精度)指标
- 特定身体部位的精度评估
- 实时性指标(如FPS)
这些可以通过配置额外的评估器来实现。
常见问题解决
在适配过程中可能会遇到以下问题:
-
关键点索引错误:通常是由于评估器没有正确识别新的关键点数量导致
- 检查
num_keypoints
是否在所有相关位置都更新了 - 验证关键点映射关系是否正确
- 检查
-
评估结果异常:
- 确认评估器类型与数据集类型匹配
- 检查标注文件路径是否正确
- 验证关键点顺序是否一致
-
性能下降:
- 检查数据增强策略是否适合新数据集
- 考虑调整模型容量以适应更多关键点
最佳实践建议
- 逐步验证:先在小规模数据上验证配置正确性
- 可视化检查:使用MMPose的可视化工具检查数据加载结果
- 指标监控:训练过程中监控多个评估指标
- 文档记录:详细记录所有修改点和配置参数
通过以上步骤,可以成功地将RTMO模型适配到新的关键点数据集上,并获得准确的评估结果。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191