Large Concept Model 数据集预处理常见问题解析
2025-07-04 07:50:16作者:殷蕙予
数据集分区问题分析
在使用Large Concept Model(LCM)进行训练时,开发者经常遇到数据集分区相关的错误。这类问题通常表现为系统提示"Partition filters (split == "train") is set but dataset has NO partition columns"或"No match for FieldRef.Name(split)"等错误信息。
根本原因
LCM训练框架默认假设数据集已经按照特定结构进行了分区。标准的LCM数据集目录结构应该是:
数据集根目录/
├── split=train/
│ └── 数据文件.parquet
└── split=validation/
└── 数据文件.parquet
这种分区结构使得训练脚本能够通过简单的配置自动识别训练集和验证集。如果数据集没有按照这种结构组织,就会出现分区列缺失的错误。
解决方案
方案一:重构数据集结构
最佳实践是按照LCM要求的目录结构重新组织数据集:
- 创建split=train和split=validation子目录
- 将训练数据和验证数据分别放入对应目录
- 确保配置文件中的路径指向数据集根目录
方案二:修改训练配置
如果无法改变数据集结构,可以修改训练配置文件:
training_data:
- name: "pretraining_data" # 直接使用整个数据集
source_suffix_text: "End of text."
validation_data:
- name: "separate_validation_data" # 使用独立的验证集
source_suffix_text: "End of text."
数据规范化问题
在预处理阶段,开发者可能遇到"AttributeError: 'pyarrow.lib.ListType' object has no attribute 'list_size'"错误。这通常是因为:
- 嵌入向量没有正确存储为FixedSizeList类型
- 使用了pandas进行中间处理导致类型信息丢失
解决方案
- 确保嵌入向量以FixedSizeList(dim=1024)格式存储
- 避免使用pandas进行中间处理,直接使用pyarrow操作数据
- 检查数据schema是否符合要求:
# 正确的schema示例
schema = pa.schema([
("id", pa.int64()),
("url", pa.string()),
("text_sentences_sonar_emb", pa.list_(pa.fixed_size_list(1024, pa.float32()))),
])
最佳实践建议
- 数据预处理:在数据准备阶段就确保格式正确,避免训练时发现问题
- schema验证:编写脚本验证数据schema是否符合LCM要求
- 小规模测试:先用小规模数据集测试整个流程
- 日志检查:仔细阅读错误日志,LCM通常会给出详细的错误信息
通过遵循这些指导原则,开发者可以避免大多数与数据预处理相关的问题,顺利开始LCM模型的训练。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.27 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
339
暂无简介
Dart
686
160
Ascend Extension for PyTorch
Python
233
265
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
37
31