基于Ragas框架提升问答系统答案正确性的技术实践
2025-05-26 22:49:28作者:翟萌耘Ralph
引言
在构建基于上下文的问答系统时,评估和提升模型生成答案的正确性是一个关键挑战。Ragas框架提供了一套完整的评估体系,特别是其答案正确性(Answer Correctness)指标,能够帮助我们系统地衡量和改进问答系统的表现。
答案正确性评估的核心要素
Ragas框架中的答案正确性评估主要基于两个核心维度:
- 事实准确性(Factuality):衡量生成答案与标准答案在事实陈述上的一致性
- 语义相似度(Semantic Similarity):评估生成答案与标准答案在语义层面的接近程度
这两个维度的加权组合构成了最终的答案正确性分数,默认权重为0.75和0.25,但可以根据具体应用场景进行调整。
提升答案正确性的技术方案
1. 基于阈值的改进策略
设定一个合理的阈值(如0.7),专注于改进低于该阈值的查询答案,这是一种高效的改进方法:
def improve_low_scoring_answers(queries, answers, ground_truths, threshold=0.7):
improved_answers = []
for query, answer, ground_truth in zip(queries, answers, ground_truths):
initial_score = calculate_correctness(query, answer, ground_truth)
if initial_score < threshold:
classification = analyze_misclassifications(query, answer, ground_truth)
improved_answer = refine_answer(answer, classification)
improved_answers.append(improved_answer)
else:
improved_answers.append(answer)
return improved_answers
2. 错误分类分析
通过分析错误分类可以精准定位改进方向:
- 误判阳性(False Positives):答案中包含的不正确信息
- 误判阴性(False Negatives):答案中遗漏的正确信息
针对性地处理这些错误可以显著提升答案质量。
3. 领域特定评分体系
对于特定领域应用,可以采用1-5分的评分体系:
- 完全不相关
- 部分相关但主要信息缺失
- 基本相关但有明显错误
- 高度相关仅有小瑕疵
- 完全准确且全面
聚焦于1-3分的答案进行改进,可以快速提升系统整体表现。
实践建议
- 渐进式改进:从最差的答案开始改进,逐步提高标准
- 权重调整:根据领域特点调整事实准确性和语义相似度的权重
- 上下文优化:确保提供的上下文信息足够支撑生成准确答案
- 迭代评估:建立持续评估和改进的流程
结论
通过Ragas框架提供的评估工具和方法,开发者可以系统地提升问答系统中答案的正确性。关键在于建立科学的评估体系,精准定位问题所在,并采取有针对性的改进措施。这种基于数据和度量的方法,相比直觉式的调整,能够带来更稳定和可衡量的效果提升。
对于实际应用,建议结合具体业务场景,定制评估标准和改进策略,并在持续迭代中不断优化系统表现。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.03 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
533
60

React Native鸿蒙化仓库
C++
198
279

Ascend Extension for PyTorch
Python
46
78

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
947
556

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
381
17

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396