基于Ragas框架提升问答系统答案正确性的技术实践
2025-05-26 15:43:46作者:翟萌耘Ralph
引言
在构建基于上下文的问答系统时,评估和提升模型生成答案的正确性是一个关键挑战。Ragas框架提供了一套完整的评估体系,特别是其答案正确性(Answer Correctness)指标,能够帮助我们系统地衡量和改进问答系统的表现。
答案正确性评估的核心要素
Ragas框架中的答案正确性评估主要基于两个核心维度:
- 事实准确性(Factuality):衡量生成答案与标准答案在事实陈述上的一致性
- 语义相似度(Semantic Similarity):评估生成答案与标准答案在语义层面的接近程度
这两个维度的加权组合构成了最终的答案正确性分数,默认权重为0.75和0.25,但可以根据具体应用场景进行调整。
提升答案正确性的技术方案
1. 基于阈值的改进策略
设定一个合理的阈值(如0.7),专注于改进低于该阈值的查询答案,这是一种高效的改进方法:
def improve_low_scoring_answers(queries, answers, ground_truths, threshold=0.7):
improved_answers = []
for query, answer, ground_truth in zip(queries, answers, ground_truths):
initial_score = calculate_correctness(query, answer, ground_truth)
if initial_score < threshold:
classification = analyze_misclassifications(query, answer, ground_truth)
improved_answer = refine_answer(answer, classification)
improved_answers.append(improved_answer)
else:
improved_answers.append(answer)
return improved_answers
2. 错误分类分析
通过分析错误分类可以精准定位改进方向:
- 误判阳性(False Positives):答案中包含的不正确信息
- 误判阴性(False Negatives):答案中遗漏的正确信息
针对性地处理这些错误可以显著提升答案质量。
3. 领域特定评分体系
对于特定领域应用,可以采用1-5分的评分体系:
- 完全不相关
- 部分相关但主要信息缺失
- 基本相关但有明显错误
- 高度相关仅有小瑕疵
- 完全准确且全面
聚焦于1-3分的答案进行改进,可以快速提升系统整体表现。
实践建议
- 渐进式改进:从最差的答案开始改进,逐步提高标准
- 权重调整:根据领域特点调整事实准确性和语义相似度的权重
- 上下文优化:确保提供的上下文信息足够支撑生成准确答案
- 迭代评估:建立持续评估和改进的流程
结论
通过Ragas框架提供的评估工具和方法,开发者可以系统地提升问答系统中答案的正确性。关键在于建立科学的评估体系,精准定位问题所在,并采取有针对性的改进措施。这种基于数据和度量的方法,相比直觉式的调整,能够带来更稳定和可衡量的效果提升。
对于实际应用,建议结合具体业务场景,定制评估标准和改进策略,并在持续迭代中不断优化系统表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
373
React Native鸿蒙化仓库
JavaScript
301
347