Extended Memory Semantics (EMS) 开源项目最佳实践
2025-05-18 04:30:01作者:秋泉律Samson
1. 项目介绍
Extended Memory Semantics (EMS) 是一个开源项目,旨在为 Node.js、Python 以及 C/C++ 提供持久的共享对象内存和并行处理功能。EMS 通过统一同步和存储原语,解决了并行编程中的多个挑战,包括:
- 允许任意数量和类型的过程共享对象
- 管理同步和对象一致性
- 实现对非易失性内存和辅助存储的持久化
- 提供进程间的动态负载均衡
- 可替代或补充其他形式的并行处理
2. 项目快速启动
以下是快速启动 EMS 项目的步骤:
首先,确保你的系统安装了 Node.js 和 Python。然后,可以通过以下命令从 Git 仓库克隆项目:
git clone https://github.com/mogill/ems.git
进入项目目录,安装依赖:
cd ems
npm install
对于 Python 部分,你可能需要安装相关的 Python 包:
pip install -r requirements.txt
启动 EMS 服务:
node index.js
这将启动 EMS 服务,使其可以在 Node.js 和 Python 之间共享内存。
3. 应用案例和最佳实践
并行 Web 服务器
EMS 可以用来构建并行 Web 服务器,通过在不同进程间共享状态来提高性能。以下是一个简单的示例:
// Node.js 示例
const ems = require('ems');
// 创建共享内存对象
const sharedMemory = ems.createSharedMemory();
// Web 服务器处理请求
app.get('/', (req, res) => {
const count = sharedMemory.get('count') || 0;
sharedMemory.set('count', count + 1);
res.send(`请求次数: ${count + 1}`);
});
词频统计
EMS 可以用于并行词频统计,通过在不同进程间共享字典来提高处理速度:
# Python 示例
from ems import EMS
# 创建 EMS 实例
ems_instance = EMS()
# 统计函数
def count_words(documents):
word_count = ems_instance.get('word_count') or {}
for document in documents:
for word in document.split():
word_count[word] = word_count.get(word, 0) + 1
ems_instance.set('word_count', word_count)
4. 典型生态项目
EMS 的生态项目中,以下是一些典型的应用:
- 并行计算框架:使用 EMS 构建并行计算框架,允许不同的编程语言在共享内存上协作。
- 分布式数据库:利用 EMS 的共享内存特性,构建高性能的分布式数据库系统。
- 实时数据处理:在实时数据处理场景中,EMS 可以用于实现高速缓存和状态共享。
通过以上最佳实践,开发者可以更有效地利用 EMS 提供的功能,构建高性能的并行应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881