OpenDiT项目中UCF-101视频数据集预处理方案解析
2025-07-06 02:37:16作者:凤尚柏Louis
在视频理解与深度学习领域,UCF-101数据集作为经典的人类动作识别基准数据集,被广泛应用于各类视频分析任务。本文将深入探讨在OpenDiT项目中处理UCF-101数据集的技术方案。
数据集结构分析
UCF-101数据集包含两个主要部分:
- 视频文件目录:按101个动作类别分类存储,每个类别文件夹包含对应的视频片段
- 训练测试划分文件:包含三个训练集划分(trainlist01-03.txt)和三个测试集划分(testlist01-03.txt),以及类别索引文件(classInd.txt)
关键技术挑战
原始数据集结构与OpenDiT项目预期格式存在两个主要差异:
- 类别名称格式不同:原始使用驼峰命名法(如ApplyEyeMakeup),而项目需要自然语言格式(如"Apply Eye Makeup")
- 数据索引格式需要整合:需要将分散在多个训练测试文件中的路径信息合并为统一的CSV格式
解决方案实现
我们采用Python脚本实现了高效的数据预处理流程:
- 类别名称转换:通过分析字符串中的大写字母,在适当位置插入空格,实现驼峰命名到自然语言的转换
- 类别索引映射:读取classInd.txt建立数字编号到类别名称的映射关系
- 数据整合:合并三个训练集文件的内容,生成统一的数据索引
- CSV格式输出:最终生成包含视频路径和对应类别标签的标准CSV文件
技术实现细节
名称转换函数采用逐字符分析策略,当遇到大写字母且非首字母时插入空格。这种处理方式能够准确识别单词边界,确保转换后的名称可读性。
数据整合阶段特别注意了:
- 文件路径的完整拼接
- 换行符的规范处理
- 数字编号到类别名称的准确映射
应用价值
该预处理方案具有以下优势:
- 兼容性强:能够适配OpenDiT项目的输入要求
- 可扩展性:易于扩展到其他类似格式的视频数据集
- 高效性:通过批量处理显著提升数据准备效率
- 标准化:输出格式符合机器学习管道的通用标准
总结
通过对UCF-101数据集的智能预处理,我们成功解决了原始数据格式与深度学习框架之间的兼容性问题。这种解决方案不仅适用于OpenDiT项目,也可为其他视频分析任务提供参考。数据处理作为机器学习工作流的重要环节,其质量直接影响模型性能,因此值得投入精力进行优化。
未来可考虑将该预处理流程封装为可配置的工具函数,进一步提升其在多样化场景下的适用性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
308
2.71 K
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
361
2.84 K
暂无简介
Dart
599
132
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.07 K
616
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
774
74
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
787
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
464