Keras中实现自定义指标的新方法:结构化损失的应用
2025-04-30 16:37:57作者:房伟宁
在深度学习模型开发过程中,我们经常需要监控训练过程中除主损失外的其他指标。传统Keras模型通过add_metric方法可以方便地添加这些指标,但随着Keras 3的发布,这一方法已被弃用。本文将介绍如何在最新版Keras中实现自定义指标,特别是那些需要访问模型中间层输出的复杂指标。
传统方法的局限性
在Keras 2中,开发者可以通过在模型call方法中使用add_metric来添加任意指标。例如在变分自编码器(VAE)中,我们通常希望同时监控重构损失和KL散度损失:
class VariationalAutoEncoder(keras.Model):
def call(self, inputs):
# ...模型计算逻辑...
self.add_metric(reconstruction_loss, name='reconstruction_loss')
self.add_metric(kullback_leibler_loss, name='kl_loss')
return reconstructed
这种方法简单直观,但在Keras 3中已被标记为弃用,需要寻找替代方案。
结构化损失的新方案
Keras 3引入了结构化损失特性,为解决这一问题提供了优雅的方案。结构化损失允许我们:
- 定义多个损失组件
- 为每个组件指定不同的权重
- 自动跟踪每个组件的独立表现
以变分自编码器为例,我们可以这样实现:
# 定义编码器损失函数
def encoder_loss_fn(y_true, y_pred):
z_mean, z_log_var, z = y_pred["z_mean"], y_pred["z_log_var"], y_pred["z"]
kl_loss = -0.5 * (1 + z_log_var - ops.square(z_mean) - ops.exp(z_log_var))
return ops.mean(ops.sum(kl_loss, axis=1))
# 编译模型时指定结构化损失
gamma = 0.5 # 重构损失权重
vae.compile(
optimizer="adam",
loss={
"encoder": encoder_loss_fn, # KL散度损失
"decoder": "binary_crossentropy" # 重构损失
},
loss_weights={
"encoder": 1 - gamma,
"decoder": gamma
}
)
实现原理分析
这种方法的巧妙之处在于:
- 模型输出被结构化为字典形式,包含编码器和解码器的输出
- 每个输出组件可以关联独立的损失函数
- 通过
loss_weights参数控制各损失的相对重要性 - 训练过程中,每个损失组件会被自动跟踪并显示
对于不需要实际计算损失的组件(如KL散度计算不需要真实标签),我们可以提供虚拟数据:
labels = {
"encoder": dummy_data, # 虚拟数据,不参与实际计算
"decoder": real_data # 真实数据用于重构损失
}
优势与适用场景
相比传统方法,结构化损失方案具有以下优势:
- 更清晰的代码结构:损失定义与模型架构解耦
- 更灵活的配置:可以动态调整各损失权重
- 更好的可扩展性:易于添加新的损失组件
- 内置监控支持:无需额外代码即可跟踪各损失
这种方法特别适用于:
- 多任务学习模型
- 需要平衡不同损失项的模型(如VAE、GAN)
- 需要监控中间过程指标的复杂模型
总结
随着Keras 3的发布,自定义指标的实现方式发生了变化。通过结构化损失特性,我们能够以更规范、更灵活的方式定义和监控模型训练过程中的各种指标。这种方法不仅解决了add_metric弃用带来的问题,还提供了更强大的功能,是Keras模型开发的新最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.63 K
暂无简介
Dart
587
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
188
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
359
2.32 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
760
72
Ascend Extension for PyTorch
Python
127
148
仓颉编译器源码及 cjdb 调试工具。
C++
122
445
仓颉编程语言运行时与标准库。
Cangjie
130
461